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PREFACE

This study was conducted during the period November 3, 1971,
through December 31, 1972, under Contract DAANO1-72-C-0281, '"Static
and Dynamic Analysis of Viscoelastoplastic Fiber-Reinforced Composite

Shells in Missile Structures", technically monitored by Mr. Charles

~ M, Eldridge, GE&M Directorate, U. S. Army Missile Command, Redstone

Arsenal, Alabama,
Mr, R, L. Eidson was responsible for coding of entire computer
programs, Mr. J. K, lLee and Dr, G, Yagawa assisted in a certain

portion of the research project.
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SECTION 1

INTRODUCTION

This report is concerned with theories, formulations, and computer
programs for the analysis of shell structures in general and fiber rein-
forced rocket motor cases in particular, Such analysis is intended for
use in efficlent design of missile structures consisting of complex
structural components subjected to various loading conditions. Only the
isothermal problems are recported herein.

Various material properties such as elasticity, plasticity, visco-
elasticity, and viscoelastoplasticity are considered in the present study.
Schapery ﬁ9,13], among others, confirmed that glass fiber-reinfor-
ced structures embedded in epoxy exhibit significant rate-dependent elasto-
plastic or viscoelastoplastic behavior.

The response of such structures depends greatly on types of loading,
static or dynamic. Perzyna [18] presented the thermodynamic foundations
of the theory of viscoplasticity. Experimental eviderces in his study
necessitated the simultaneous consideration of viscoelastic and plastic
properties of ¢ material., Both static and dynamic loadings will he stu-
died in detail in the present study.

Yielding of the fiber-reinforced structure in the context of present
state of art still remains a controversial matter. Studies of plastically
anisotropic materials were initiated by Hill [ 8 ] who postulated the form
of yield condition based on the von Mises criterion for isotropic plastic

material. Hu [10], on the other hand, generalized the Tresca shear-stress
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yield criterion in a similar manner, These theories, however, are incap-

able of taking into account the presence of fibers in a ductile matrix.
{,

Mulhern, Rogers and Spencer [ 14 ] proposed a general continuum theory of

the mechanical behavior of fibers which are considered plastically iuex-

tensible. Lance and Robinson (12 ] more recently presented a theory of I

ductile hehavior of composite materials based on physical ideas related to
those contained in the maximum shear stress theory of isotropic materials.
It is evident that this later'theory removes shortcomings of all other
theories but successful application to a shell structure with fiber angle
plys appears to he doubtful, In view of these developments, the most pro-
mising approach is to modify Hill's theory to incorporate strain-hardening
of fibers in similar context of the work of Lance and Robinson., Jensen
{11] and Whang [23] applied this idea to orthotropic material, In the
present study a further extension is made to account for layers of fiber
angle plys,

Thin and thick shells are considered, A treatment
as a thin shell requires plane stress approximation of the finite eclement
model in which anisotropic purameters for each axisymmetric layer of
angle plys through the shell thickness must be characterized. Detailed
study on this subject which has not appeared in the ‘literature will be
elaborated in the present report, The results of a thin shell approxi-
mation are compared with three dimensional thick shell theory in which
imposition of axisymmetry permits use of a plane straln isoparametric
finite element. This ccmparison points to a distinct superiority of three
dimensional theory in dealing with filament wound fibers. The computer
program is capable of analyzing a body composed of a combination of several

monolithic materials and composite materials,

BRI 3 | ST, YT R, S 4 AT RIS U N 0 i P P 4y 50 T T 2 Mt er s A




S AT sty f

[CY

<o)

'programs are written with maximum utilization of currently available numer-

\
Based on thesy ideas and .the theoretical background, details of form-
\.
‘ulation of governing équations are presented in the following sections, A
tthin shell is diacussed in Section 2 and a thick shell in Section 3 with

spacialized topics included in Appendices A,1 through A.12, Computer

ical methods, Demonstrative problems are solved and results presented in

Section 4, Conclusions and recommendutions are given in Section 5. Docu-

mentation of the computer programs is included in Appendices B.l through

B.6.




SECTION 2

THIN SHELL ANALYSIS

2.1 GENERAL

Since an extensive review of developments of thin shell theory
is heyond the scope of the present study we simply begin with
Novozhilov's theory [15,16]) which is relatively widely accepted among
the engineers. Modifications are then ifntroduced to account for
anisotropy, fiber-reinforced composites, plasticity, viscoelasticity,
and viscoelastoplasticity. Axisymmetric shells under static and dy-
namic loadings will be considered.
2.2 CONSTITUTIVE EQUATIONS FOR ELASTIC AND PLASTIC BEHAVIOR

Based on the Love-Kirchhoff hypothesis, small strains, large
displacements, and moderate rotations, the membrane strailn tensor

ﬁrﬂ and the bending strain tensor %,q aTe given below:

1 “ : A Y,
. n - - + 3 + 3 )
e A 2 fu lﬁ + uﬂl 2w ﬁwﬁ (u“y u hy)\)(u-’B + u bev,}
(2.1)

XyAm -ut, - ph - u bt - b +bh' b W .2
vh " Lvh uk‘! VY mlﬁ UB “nla bﬂ uau (2.2)

Here all Greek letters range from 1 to 2 and u and « are the dis-
(¥

placements, hwﬂ is the second fundamental tensor , the commas and

strokes represent, respectively, ordinary and covariant differentia-

tions, It should he noted that all nonlinear terms in the bending

T a1 =003 Lo WA VLA S




strain are neglectec. Derivations of (2.1) and (2.2) and the phys-
fcal components hased on Novozhilov's theory are given in Appen-
dix A.l.

For linear elastic behavior, the stress tensor is given by

o = n'(yc, + o({c) (2.3)

where the membrane stress tensor qcff) and the bending stress tensor

"?E) are, respectively,

a
oc{:’ - hgm‘”'e (ap - YTZ_D.'vﬂAu.

AL * o T(y) ylp. (2.4)

in which h is the shell thickness and Du'm”‘ is the tensor of elastic
moduli.

1f yielding of the materlal is considered we must modify (2.4)
in order to incorporate plastic behavior. For the isotropic von

Mises material the plastic potential function f becomes [8 |

f=g° =33 (2.5)

where J is the second deviatoric stress invariant and 5 is the
equivalent yield stress. For the anisotropic von Mises material
(8 ], however, we have

4
1 1ty k
L R TWWE (2.6)

where A“u is th. anisotropic parameters, S” is the deviatoric




stress tensor, and ¢,y,k,4 >~ 1,2,3, For the case of plane stress

(2.6) becomes

3
£=F = 3dhq 2.7)
in vhich
2 - [ q.ll nﬂ? 012‘! ]
and
11 T Im 0
A -
-~ 21 Aon 0
0 0 6%3

Explicit forms of (2.5) and (2.7) are given in Appendix A.2.
The incremental plastic strain tensor is related by an asso-

ciated flow rule,

(») _ df
d = ——qp d .
Yop Gl (2.8)

where di is the positive constant,

Differentiating (2.5) or (2,7) yields

£
dg = 'i'ol_ ;, a2 = 2 o™ (2.9)

where

Let the plastic modulus E(p) be given by

o




Y

-

dOl
E,y = ;sf;y (2.10)

«(p)
where dy ’" 1s the incremental equivalent yield strain. By equating

(p)
the incremental plastic work dW ’ done by the current stress and
current incremental plastic strain with that done by the equivalent

yléld stress and incremental equivalent yield strain,

(p) (p) =(p)
W - a"’dya'; = 3dy (2.11)

and substituting (2.8) into (2.1l1), ve obtain

w(p)
dy = d¥ ' /E (2.12)
Now inserting (2.12) into (2.8) yields
(p) -(p)
dyah Zqﬂdvap (2,13)

Since the total incrcmental strain is the sum of the elastic

and plastic strains we can write

(o) (p) (2.14)
dxyp - dxy’ dnyﬂ
( .
where dxx;) is the elastic strain tensor. This enables us to ex-

press the total incremental stress in the form,

()
4P - DaN"(dvm - dv x’u) (2.15)
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or

d?P = xf"“m(d\x.u - z,md?/(’)) (2.16)

-(
In view of (2.13), (2.16), and (2.9) we solve for dy ’3

-(p) -3 BA
dy ~ =H z QMM gy 2.17
af Al ( )
i which
-1 = ] "nﬁv
H Bip) # 22D

Substituting (2.17) into (2.16) gives

P o My EVRA
do @M H)dv‘ya (2.18)

vhere B*™ 15 the tensor of plastic moduli,

o . .H-‘ﬁrarozmzwuﬂm (2.19)

The explicit form of E"‘“ is given in Appendix A. 2.

2.3 CONSTITUTIVE EQUATIONS FOR VISCOELASTOPLASTIC BEHAVIOR

The principle of conservation of energy states that the time
rates of the kinetic energy k and the internal energy U are equal
to the mechanical power R and the heat energy Q. In the absence

of the thermal loading this principle may be expressed as

e
+
e
[ ]
-]

(2.20)




Here the superposed dot represents the time rate and

1
k = -z-f,,quqdv. (2.21)
v :
U -f 0edV (2.22)
v
R= va av+] Pav da (2.23a)
n . ) h .
v A

in which , is the density; ‘a is the velocity component; . is the
internal energy density; Fp is the body force; ol is the surface
traction; and qx is the unit normal to the surface. Here the small
strain and rectangular cartesian coordinates are used. Using the

Creen~Gauss theorem, (2.23a) becomes

R ’f (")F”Vp + q”p v

v A
8,0 + G vR)dV (2,23h)

v

Now, inserting (2.21) and (2.23b) into (2.20) yields

ft 84 o - pafvy - g+ 1av =0 (2.24)
v

For the principle of linear momentum to hold and for arbitrary

volumes we must have

Uaa"“n - paﬁ'o
1e 4




and

pe ™ cgpvﬁ’a - ayPsz (2.25)
Here the commas denote ordinary differentiation and a% is the
acceleration,

Our objective here i3 to propose a form of free energy func-
tions in incremental quantity such that the non-smooth or inelastic
strains may be included for a small time interval At. For iso-
thermal conditions, the incremental free energy 4 (At) and stresses
3"(At) are assumed to be functions of incremental strains Yyﬁ(At)
x;a)(At) + x;%)(At) and incremental internal variables (hidden
variables) (&3‘(At) &:‘.%A t) + Q‘J (At). This statement may

be written as

(r) (s (e ()

s (at) = ol‘v,,(m:). Y,,(AL), Wy "), wy, (at)| (2.26)
(r)(o r
0t 3(a%) = 3V, tat), ¥y lar), oy G0, ‘U0 (2.27)

For isotitermal conditions, the free energy is the same ss the

internal energy 8o that

o8 = pe = My

aff

or for the small time interval At,

10
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o (at) = P(at) {v m) + vf (At)" (2.28)

At this point we introduce here the incremental form of free

energy in a truncated Tayler series expansion [5 ],

) (o)
ﬂﬂxu [ ] » [

-*O’pl (p) (p)
I By Y
(l'ﬂ A

1
+ -
2 &R A

ps (pt) = *

n
1 R}\p, (r)(o (e)p) C(rda) (p)(p)
= ) +
22"" % ) 'W ' )

( YaY (e)(p) (o) (p)
LD o N R IO R (2.29)

mn R R
vhere d?f?“ arc stiffness constants associated with the internal
variables, Note that (2.29) has the form of truncated Taylor series
expansion only to include quadratic terms. However, the product

(o) (p)
term of ¥ ; and Xy; is missing., This is because an explicit mater-

(&) (p)
ial kernel relating the product of v *’ and Yy: is nonexistent .and
coupling of elastic and plastic strains can be obtained using any
()
one of the failure theories. Lastly, ayﬁ defined here as the inter-

nal variables represent time dependent physico-chemical properties

or simply a viscous behavior which may be exprcssed as

t
( ) ~(t- ) 'y
'qaﬁ "'f exp ¢ le (r)d« (2,30)
0

where » is the time variable and T,y is the relaxation time. 1In

11
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order to facilitate an explicit integration we assume a linear

e s N

variation of 2yﬂ within the time interval At given by

T~ (t At) ,

F‘() “ ( )+ ——"(§ ;.1)4 6) ) (2.31)

where (s) s the current time step, Substituting (2.31) in (2.30)

and performing integration we ohtain

(¢) (r )( ). (
) r) (e ])+

qags) asTh) + By e (s) (2.32)

in which

() -At (e) (e) (p)
Vo= e, B'= T,y (8- A)

(e)

(yp)d (e)
& " Tepy (- 8 ) $ = ——(1- A) ]

The derivation of these parametcrs is given in Appendix A3,

Rewriting (2.28) for the current time step (8) as

¥y ( )«)
n{;ﬁagg O %”*"'?“; ;;; 'TT%T“Y : ‘Yj%T?)
Ya

MY q,0@ 9, 4@ ‘

o<.) o( )
- *Pw (7@ + Yup® =0 (2.33)




R % £ i AL

13
and substituting (2.32) and (2.29) into (2.33) yields
)(r)(.) (r) (e} | (e},
PP w+z D+ BY @D + C¥ ¢
( ¥ Cr ) ‘B v’\!-" )\u.s) )
r=)
(33(p) r)
+ B (‘3 +
“q QQ}Y (9) Zg"’ qaés) q)‘ ® q (s)'Y és)
rm}
(r) (1) o 6«#”‘ (P)()z{ (s)= O
+ @ + - +
qx;f”vaa Vaaqu’” g va a ®
0(0)
Since all variations other than XIﬁ are not arbitrary we must have
the relationship
< )
(o) , e )
00'9(,, - f"“uy .(8) +Z ga%z A c'i) s-1) + ﬁ i' (s - + c v .(s))
M rml (r) M )\
(2.34)

and

(G NEY) Ced  (5)C(p) Ced(ple(p)
Hue bty i . o g"m“ )+ ~
AR vo:") 5)9 [q aﬁ” q ®+ q @&V (@

(e) ,
+ qaﬁs)%éo)+ Y, 40 q)}:;. 0 (2.35)

It should be noted that (2.34) results from

ap o O
°ﬁ P e

by, 8

which states that the stresses are derivable from the free energy
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functions. In our specific problem, however, this stress is due to
an elastic strain and a law governing the plastic strain is needed
to obtain the stress due to a total strain as already demonstrated
in Section 2.2, The relationship (2.35) may be considered as the
dissipation which plays a significant role in heat conduction prob-
lems, However, for the isothermal problems as considered here these
terms of (2.35) are not neaded in the analysis,

Now, if the plastic behavior is considered we must calculate
the stress incrementally. For static analysis the load is applied
in increments. For transient analysis or time dependent problems,
the total loads are applied for each time increment. In either case
the incremental stresses d&” are calculated iteratively until con-
vergence is achieved, Therefore, we must express (2.34) in incre-
mental form associated with the¢ total strain in order to be combined
with (2.18) for iterative cycling upon direct superposition of visco-
elastic behavior and plastic hiehavior. Such superposition is achieved
vy celculating Y?Rk; initially by viscoelastic stresses, These ar-
guments require that the second term of (2.18) for the current time

step {s) t2 added to the incremental form of (2.34),

n
(o) (e)Ce) Cr)
i = #May 'm + ) AP A dqe- + B dye-D
Ap ba r) Al A
{(r) . %* p}\
+ C dy(m | + PPy (e (2.36)
A Ajs

In eariier studies, the authors obtained a slightly different form
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for d&"Qﬂ) by means of the generalized Maxwell model [1]. However,

a8 proper choice of the relaxation time would yield identical results.

2,4 THE FINITE ELEMENT EQUATIONS OF MOTION

The use of the finite element method is widespread [17,25]. The
advantage is due to its capability in handling complex geometries,
'bvuﬁdary and loading conditions.

The geueralized coordinates at o node placed in the midsur-
face of the ring element include the displacements in the meridi-
onal, tangential and transverse directions plus the meridional
directions.The tangential displacement need not he considered for
axisymmetrical deformations. For future use in connection with
asymmetrical loadings and for the purpose of generality, we shall
include the tangential displacement in our formulation. The element

generalized coordinates @, are given by

8, = ¥, 0" (2.37)

where is the normalized displecement functions and the super-

LI
script ranges from 1 to the total number of generalized coordinates,
For the two node element as in the case of the meridional line ele-
ment used in the present study we have n= 2 for the maximum range. s

Appendix’ A.4 gives the explicit form of Vlu for linear variations

of meridional and tangential displacements, cubic variation of trans-
verse displacement and the corresponding meridional rotation. Such an

element has proven to be quite efficient [24].
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The general finite element equation of motion is obtained by

using (2.3), (2.37), (2.25), (2.22) and (2.33b) in (2.20),

M OV
Mo +fo°"‘ m"’ dA =P, (2.38a)
A
or
o . Ny
M0 +[| o°P M aa+| P —Laa=p, (2.38b)
A (w) AN A (b) N9

Here n“ is the mass matrix

Man ff P*:’«wmdy (2.39)
v

and P, is the nodal generalized force derived from (2.23b). It

should be noted that (2.38b) is obtained from the relationship

Yo:p ) eaB *s Xaﬂ (2.40a)

and the integration through the thickness coordinate r is contained
in 8 and @5 of (2.38b). In view of (2.1), (2.2), and (2.37),

we have

N
e + N
an " Mol T Cuny g0

- N
Xep " Brag? (2.40b)
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where Anﬂlﬂ’ Cynap » and Bwﬂ represent derivatives of the normalized
interpolation function in the membrane and bending strains of (2.1)
and (2.2).

We now introduce a perturbation or a variation to (2.38b) for

an arbitrary time step (s)

N, dti' + f d,o‘:'f)m (Ayap * c“o,ﬂra’ts) )dA + f g’::’§a) CyuarpdA dexs)
A A

+fdg"” ) Buupd“ = dP (8 (2.41)
(v)
A

where do?:sc) and dd{ffa)are deduced from (2.36),

n
* ()
d!ﬂffl) = h(ifM 4 fﬂlﬁ)deﬁfw h Zg’{f%“[ c déMés)

Ced (pd)u) ()
- - + dé- ‘3-1) 2.428)
+ Ad gD B ¥ ] (

and

n
h n? (r) ..
= (M FA — BA
do‘é’ff» 12(11" S LD dx;;p +12 z €'l c dX.‘w

r=)

( (v (p)
+ R’d(a ts-1) + ﬁdx“ (8-1) (2.42b)




Substituting (2.42a) and (2.42b) into (2.41) the local finite element

equation of motion becomes

. (o)
Myda'ts) + J,.dde)+ K, doE) = dF,6) (2.43)

(o)
in which J,, and KN; are the viscosity matrix and linear elastic

stiffness matrix, respectively,

n n
(p) h® WY
T hf 25{3: P E A ghurudh + 13 f z gHa: By By A

[ )% =
A" A r=t (2.44)

(o) Au : K A\
K, =h f PPN by judA + va Rk "By aBua 94 (2.45)
A “A :

The nodal vector dF s) contains not only the external load but also

the pseudo loads of various sources,

(v) () (») (n)
dFs) = dPJ®) + dF”v‘s) + dF, (s) + dFN’(s) + dF""(s)

or

(v) (a) M (p) ™ (n)
dF. @) = dPys) + dF, (s) + K, da(@s-1) +K,, da(s-1)+ dF, (s)
(2.46)

in which the pseudo viscosity load vector,

n
(v) Ce)Cr)(n) (0
' ar, (8 = [ b f 2;‘{?’;“ A dag (8-Y Ay dA + f zrj{f}“ B Aty dAT +
A A

rfw}

rsl
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3 n
+ 17 {f ZF"”“ 5)(')(“ VB, & +f Zsﬂ’“ w58 B n, 3411 46 (s-1)
A [ ]
(2.47)

The geometric stiffness matrix,

(a)
Kin 'fﬂ?-p)(s)cuwa“
A

the plastic tangent stiffness matrix,

() _ o Yam h° m
Ky = hf D H\uA,nom At 17 Mg ByygBu, 98
S A A

A

" and the nonlinear pseudo load vector dFi%g) contain all nonlinear
terms not included in the above. It should be noted that the geometric
and plastic stiffness matrices are combined with the responses lagging
behind one time step and used here as pseudo loads.,

If the structure is fiber-reianforced, then the suitable transfor-
\matioh matrices are applied to (2.43), The derivation of governing
equations is quite complicated for asymmetric loads. Stresses, straims,
stiffness, and displacements must be expanded into Fourier series. If
loads are applied statically, the mass term in (2.43) drops out. For

the absence of viscosity the second term is eliminated. This also

(y)
requires the pseudo viscosity load dF“%s) to be dropped. We will dis-

cuss these special topics in the following sections,

ik 8 i %

2.5 FIBER-REINFORCED SHELL

In general, an axisymmetric shell reinforced with fibers would
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normally have layers of angle plys with each layer provided with

, -bapiy and - ply,& being the wrap angle, Such arrangements tend

to keep the deformation of the shell still axisymmetric if loads
are axisymmetrically applied. A typical one layer element is shown
in Figure A.5.1.

Orthotropic properties exist in the directions longitudinal and
tangential to a fiber. Coordinate transformations for elasticity
properties are then necessary to conform to the standard generalized
coordinate system of a shell., A similar transformation is required
for the plastic stiffness matrix. These iransformations are elab-

orated in Appendix A.S.

2,6 ASYMMETRIC DEFORMATION

Let g represent all components of displacements, strains, stresses,
stress resultants, etc,.; then, we have the Fourier series expansion

of g for asymmetric deformation of the form,

g(s,0) = é?)sj + Zg"fa) cos b +2 g‘&)ain,e (2.48)
‘I

§ =y

in which & and 9 are the meridional and tangential coordinates,respec-
tively, y is the harmonic number, the first term in the left hand side
represents harmonically uncoupled part, and the second and third terms
denote harmonically coupled parts for even and odd functions, respec-

tively. The Fourier series representation of the strain-displacement
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relations and stiffness matriceé is given in Appendix A.6. Equiva-
lent nodal load vectors and stresses are discussed in Appendices

A.7 and A.8, reépectively.

27 STATIC LOADING
2,7..1 ELASTOPLASTIC ANALYSIS

There are in general two methods to perform 8n elastoplastic
analysis: (1)the tangent stiffncss method and (2) the initial stiffness J
method. The former recalculates or updates the stiffness matrix
during the iterative solution cycles whereas the latter takes ad-
vantage of the inverse of the original linear elastic stiffness
being kept constant on which all subsequent iterative cycles are
based. Obviously, this latter approach is simpler in procedure
but requires a greater number of cycles for convergence. In both

cases, the load is applied in small increments., The present study

is based on the tangent stiffness matrix approach. Both of these

methods are elaborated in Appendix A.9.

2,7.2 VISCOELASTOPLASTIC ANALYSIS

Problems of creep and stress relnxation are time dependent
phenomena, The procedure for analysis is identical to that in the
elastoplastic analysis except that the increments in loads are re-

placed by the increments in time and the total load is applied at

each time increment during the numerical integration of the gcvern-
ing equations.
The equations of equilibrium are solved by a recurrence for-

mula derived from a suitable difference operator. Sucha formula may
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be derived by assuming a linear variation of either displacements
or displacement rates. Explicit forme of various difference opera-
tors are given in Appendix A.10.

For each time increment the viscoelastic analysis is performed
initially; then the plastic matrices are calculated from the visco-
elastic stresmses, A standard iterative cycle is subsequently re-

peated until acceptable convergence is achieved.

2.8 DYNAMIC LOADING
2,8.1 ELASTOPLASTIC ANALYSIS

Effects of inertia are added to the governing equation for a
dynamically loaded shell., We construct the mass matrix according
to the formula (2.39) elaborated in Appendix A.ll. The equations
of motion thus obtained are solved once again by a suitable diff-
erence Operatdr.., In general, a linear or constant acceleration
assumed for a small time increment is used for deriving a recurrence
formula (Appendix A.10), Various schemes of numerical integration
have been investigated and are available in the literature [ 20 J.

For all time-dependent problems as indicated in the previous
section the increments in loads are replaced by the increments in
time to handle nonlinear plastic behavior. This would require the
total dynamic load to be applied at each time increment during the

numericel integration process [2,3,4].

e i A1

A% AVAY AN,

DL
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2,8,2 VISCOELASTOPLASTIC ANALYSIS

The dytamic analysis ofa.viscoelastoplastic fiber-reinforced §
shell is our ultimate goal in the present study. Because of this

generality we will summarize and itemize the analysis procedure.

(a) During the first time increment, the generalized displace-
ments are calculated from the recurrence formula with initial
and boundary conditions,

(b) Examine the current viscoeliastic stresses in (a) above to

SR S 4N 2 ok ot e,

determine if any layer through thickness of any element has
yielded, 1If so,'the plastic tangent stiffness coefficients
for that portivn are developed,

(c) The plastic tangent stiffness matrix, if non-zero as deter-
mined in (b), 18 incorporated into the recurrence formula
to calculate displacements and velocities from which incre-
mental strains and strain rates can be found.

(d) The incremental equivalent stress is calculated and compared
with that of the previous cycle.

(e) Steps (b) through (d) are repeated until convergence or a
certain accuracy is obtained for the incremental equivalent ]
yield stress.

(f) For a yielded element (or layer of the element) the maximum
equivalent stress which was originally set equal to the input

i yield stress is now updated by adding the incremental equiv-

alent yield stress to account for strain hardening. For the

yielded portion the anisotropic parameters of plasticity
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must be updated.
(g) 1f no yielding occurred anywhere in the shell the steps (b)
through (f) are omitted.

(h) A new time increment is initiated and the above steps are re-

peated until desired time increments have been completed.
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SECTION 3

THICK SHELL ANALYSIS

3.1 GENERAL

It is generally known [15] that a shell with the thickness-radius
of curvature ratio of approximately 1/20 or larger is regarded as a
thick shell ixn which transverse shears become significant. Tradition-
ally, a thick shell is analyzed similarly to a thin shell with trans-
verse shears incorporated. Chung and Bandy [6 ] studied finite
element applications to an axisymmetric thick shell considering trans-
verse shears in the planes of meridional and transverse directions
and tangential and transverse directions. In their‘formulation,rates
of these transverse shears with respect to meridional coordinate are
added to the bending strains of respective directions. For fiber-
reinforced shells with several layers of angle plys through the thick-
ness, however, the three dimensional shell theory is more convenient.
In fact, it will be shown in Section 4 that even for a thin shell if
layers of fiber angle plys exist through the thickness direction the three
dimensional theory appears to he more satisfactory, particularly when
inelastic yielding is considered.

For the reasons stated above the preseant study will employ the
three. dimensional shell theory and be speclalized for axisymmetric

geometry and deformations,
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3.2 INTERPOLATION FUNCTION

Although the three dimensional theory is used only radial and
. axial displacement fields may be considered because of axisymmetric
conditions, thus eliminating shears in the planes of axial and tan-
gential directions and radial and tengential directions. This permits
use of a plane element subject to integration around the circumference.
Suchaplane 2lement as used here is the isoparametric element with four
corner nodes which represents a linear varilation of axial and radiu.

displacements within the element. This element was originally devel-

oped by Ergatoudis and Zienkiewicz [257. Detailed descriptions of
this element are given in Appendix A,12.

The strain components considered here include normal strains in
axial, radial and tangential directions plus shear strains in the plane
of axial and radial directions because of axisymmetry. Development of
governing equations follows closely the procedure presented in Section
2, The isoparametric element is based on the local coordinates with
origin at the center of the element and four corner nodes having coor-
dinate valuas of 1 and -1, This permits use of Gaussian juadrature
integration in. the plane together with integration around the circum-
ference. Consequently, to conform to global coordinates a transforma-
tion by means of Jacobian matrix is needed for stresses and strains.

Such_trlnlformation is in addition to fiber transformation as elaborated

in Appendix A.S.

RIS

The generalized displacement field 8, (8 = u, 84 = v) is given

by
8, = 4,48 (3.1)




~ vhere 1=1,2 and ¥=1,2,...6 and ¥,y is the normalized interpolation func-

tion (isoparametric). Alternatively, 8, may be expressed as

8, = 4,0 (3.2)

vhere r=1,2,3,4 and ¥, is simply the interpolation function (isopara-

metric) given by

W = 2Q-8) (1-1)
Vo = Z(14E) (1-1)

Vo = Z(HE) (147) (23)

1
Yo = 7(1=8) (M)
in which € and T are isoparametric coor. .ates, See Appendix A.12 for

derivation of (3.3). The difference between ¥,, and ¥, is associated

with arrangements of the nodal displacement vector,

3.3 LINEAR BLASTIC CONSTITUTIVE EQUATIONS

Because of the isoparametric coordinates which require transfor-
mation to the global cartesian coordinates, derivatives of any variable

with respect to isoparametric coordinate are given by

LB [
[o14 o
[ . d (3 4)
o dz

where the Jacobian J is
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95 Oz
52 28
J =
R L
on o {3.5)
Therefore,
d d
3 o | %8
= i 1
d d

The linear elastic stress-strain relation for axisymmetric solid

is given by

whel'e "‘ - 1’2’3’4.

The corresponding strein-displacement relations for small dis-

placement using (3,1} through (3.6) may be expressed as

4
du
Vig = ¥, = w" Z Q(A;, + Bg,8 + C; My, (3.8a)
Yon * %; - _Z QA , + B, ,F + C,, v, (3.8b)
4
Yas = Y 1:-_- %—2 (1+ B,.2+ C, | +D, FMu, (3.8¢)
2wl
AR %34- %‘é - z {Q(A,, + B, & + Cpulu,

+ Q(A;, + B, S + Cguilv,} (3.8d)

F =




o LR e LA AR e

g O D A
- LTSN S,

N «

29

in which the values of all constants are defined in Appendix A,12.

3.4 CONSTITUTIVE EQUATIONS FOR FIBER-REINFORCED VISCOELASTOPLASTIC
SOLID(AXISYMMETRIC THICK SHELL APPROXIMATION)

The explicit form of the thrée-dimensional.yield function: given in
(2.6) is elaborated in Appendix A.2. The tensor of plastic moduli
ﬁ"*‘ generally referred to as plastic matrix 1is derived in Appen-

dix A.2,

Our purpose here is to derive first of all the orthotropic visco-
elastoplastic stress-strain relation of the type (2.36) specialized
for axisymmetric three dimensional shell.A gdetailed procedure achiev-
ing this goal has already been presented in Section 2 for a thin shell,

The final form requires change of indices from @,B,A,u to t,4,k,4 so that
n

(2) ()
doti(s) = ptixd gy, y(s) + Z AL ;kz(s-l)

rel

(l‘) 3 (P) . %* L
+ B dYyy(s-1) + C dY, ,(s)] + p! 3% dy, g(s) (3.9)

3.5 FINITE ELEMERT EQUATIONS OF MOTION

In the case of a thin shell’integration through thickness was
required. Such integration here, however, 18 combined with axial
direction over the area of is:parametric plane element by means of
Gaussian quadrature. This byr:sses distinction hetween membrane and

bending stresses, Effects of tfss ¢ esses are combined in the pre- 1

sent procedure. The final form of equation of motion following the

same operations described for a thin shell in Section 2.4 may he
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derived in the fom

(o)
MyndB" (8) + J,,d8(s) + Ky, d8(s) = dF,(s)

in which

14 fie) ]
- 2 BCe) € Agkghuy,r |J|dBan
o)
ANkLAMtJ r|3dgdn

»)
dFy(s) = dr,,(s) + dFN(s) + dFN

2«
dFN(S) - tZﬂff z g(’k A dqu(s 1) Apnsj

+ %M‘ B Am Avy Jr|3]agdn1aé" (s-1)

1,1
(p) *13kQ
dFy = [an‘[ D LY rIJldng]]d@'(s-l)
Bt Sad |

It should be noted that Ay 4 can easily be identified in the expressions
(3.8a) through (3.8d). The product term is also shown in expressions

such as F,,, G,,, etc. in Appendix A.12,

3.6 ANALYSIS PROCEDURE

Various cases of analysis including elastoplastic and viscoelasto-
plastic snalysdés under static and dynamic loadings for a thin shell are
described in Sections 2.7 and 2.8, Other than three dimensional yield

criteria for the thick shell as shown in Appendix A.Z’we follow the
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identical procedure as in a thin shell, Therefore, no further com-

ments are required for the case of a thick shell,

jo——
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SECTION 4

APPLICATIONS

4.1 GENERAL

Based on the theory and procedure described earlier various
versions of computer programs have heen written., Detailed descrip-

tions of these programs are given in Appendix B and its subappendices.

Some demonstrative problems are solved and the results discussed

in the following subsections.

4,2 GEOMETRIC CONFIGURATIONS AND MATERIAL PROPERTIES

Three types of geometry are considered for example problems:
(1) oylindrical shell, (2) combined cylinder and spherical dome, and
(3) the structure same as (2) with a portion of the dome section
built up with increased thickness.
The geometries shown in Figures 1 and 2 are analyzed as thin shells

vhereas those shown in Figures 3, 4 and 5 are treated as thick shells.

The fiber wrap angle @ is measured from the circumferential direc- ?
tion rather than from the longitudinal axis. Analytical results for 3

isotropic solids and fiber angles o = 0°, 50°, 90° are compared, Deter-

mination of isotensoid dome surfacee and corresponding fiher angles 3
based on netting theory is inadequate if bending is significant, The ;

analytical means of determining isotensoid surfaces by bending theory, how-

ever; appears to be impractical. Furthermore, wrapping of fihers dic-

tated by bending analysis in general may not be possible. For these
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reasons the present program performs stress analysis for given trial
geometries and fiber angles to determine efficiency of performance or
load carrying capacity.

In our examples to he presented in the following subsections two
fiber layers are used. Each layer consists of angle or cross plys
wrapped with +@ and -o fibers which lead to axisymmetric deformations
under axisymmetric loads, Material properties used for all example
problems are the same and they are listed in Tables 1 and 2, For the
analysis as isotropic solid the material properties corresponding to

transverse direction are used.

4,3 STATIC LOADING

4,3.1 THIN SHELL

The computer programs SP1 and SVPl are used for analysis of the
structures as a thin shell.

The elastoplastic deformations of a cylinder (Geometry Case 1,
Figure 1) subjected to internal pressures are shown in Figure 6. The
only experimental data available for comparison is plotted also in
this figure., The elastic load limit for analytical solution is slightly i
lover than that for the experimental value for a=50°, It is interest-
ing to note that for 0-90: which represents fibers oriented in the
axial direction, yielding occurs at much smaller strain and no strain-
hardening 18 exhibited.

The viscoelastic response of this cylinder with am50° subjected to

an internal pressure of 250 psi is shown in Figure 7. A relaxation time

T(:) = .005 sec, with r= 1,2,3 and the integration time increment At
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TABLE 1

MATERIAL CONSTANTS FOR THIN SHELL

Modulus of Elasticity

E. = 8.5 x 10° psi
E, = 2.8 x 10° psi

Shear Modulus

Poisson's Ratio ViL ™ .4
wr = .131

Plastic Modulus E(py. ™ 8.5 x 10° psi
E(p)aso = 3 x 10° psi

Plastic Shear Modulus

Gipyre G(pyrr = 1.3 x 10° psi

Yield Stress

(o) ™ 3,05 x 10° psi

Oto) ™ 3 x 10° psi

O(u)ese ™ 2 X 104 psi

O(a)TL ™ O(o)rr = 5 x 10° psi

Density

.0388548 pci

MATERIAL CONSTANTS

2
FOR THICK SHELL

39

Modulus of Elasticity B, = 8.5 x 10Ppsi
E, = 2.8 x 10°psi
Shear Modulus Gy = 1x 16
Gy = 1.3 x 10Ppsi
Poisson's Ratio Wi = .262
Vip = L4
Plastic Modulus E(py), ™ 8.5 10° psi
Plasti: shear modulus Gy = 1.3 x 10" psi
Gpy =1x o’ psi
Yield Stress Olo)l ™ 3.05 x 10°P psi
Go)r = I x 10° psi

(o)t = 5 x 103 pBi
Otodir ™ 2 x 10° psi

Density

.0388548 pci
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= ,001 sec. are used in this case, It is seen that the viscoelastic
displacement gradually increases and reaches the linear elastic dis-
placement at approximately .012 sec, More discussions of this subject
are given later for a thick shell,

Effects of various fiber angles for a dome-cylinder are shown in
Figure 8. The fiber angles for the dome part of the structure are arhi-

°, 25°. 35° for elements 1, 2, 3 and 4,

trarily designated as a-5°, 15
respective}y. With this dome the fiber angles for the cylinder are
taken as o= Oo, SO°, and 90° for 3 separate analyses, In one case

a= 90° is used throughout the structure, Displaced shapes of these

4 different cases under 100 psi are compared in Figure 8. For @=0° for
the: cylinder the displacement is largest at the dome but smallest at
the cylinder, In contrast to this,vv-90° everywhere gives the least
displacement at the dome but considerahly larger displacement at the
cylinder. For a=50° for the cylinder with variahle fiher angles at

the dome the displacement is ahout medium throughout the structure.
These results appear to he quite reasonable,

Some serious difficulties remain, however, in the elastoplastic
analysis of a fiher-reinforced thin shell. These difficulties stem
from cur plane stress approximation of three dimensionai shell, which
in turn effecs a unique definition of anisotr&ﬁic yleld parameters as
proposed in Appendix A.2, Specifically, the parameter A,;, lacks unique-
ness as the fiber rotates hetween 0° and 90°, This leads Ay, to take
on large values which consequently cause the equivalent stress G to

assume a negative value. This situation arises for ¥ < 45° in static

analysis but such range increases in dynamic analysis, As pointed out

in earlier sections, the plane stress approximation for a thin shell is
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8imply a device to avoid treating a shell as a three dimensional struc-
ture. It is too simple an approximation to afford checking the yield
phenomena of fiber-reinforced shell through the thicknelo.uniquily.

Such discrepancy exists also in dyﬂnmic losding.:

4.3,2 THICK SHELL

The computer programs SP2 and SVP2 are used for analysis of the
structure as a thick shell,

Figure 9 shows plots of internal pressure vs, radial displacement
for a cylinder (Geometry Case 3, Figure 3). For all wrap angles other
than @=0° the elastic limit pressure occurs much smaller than the ex-
perimental value for aw50%, The shapes of the curves are quite sen-
sitive to wrap angles as noted in the analysis as a thin shell, The
results for o=90° are identical in both analyses as either a thin shell
or as a thick shell, although the elastic limit for au50° in the thin
shell is larger than that for @=50° in the thick shell. This is at-
tributed to most probably the non-uniqueness of the anisotropic param-
eter A5, as discussed in the previous Section.

Displaced shapes of cylinder for various wrap angles subjected to
the internal pressure of 2.27 psi are shown in Figure 10. The least
displacement in both radial and axial directions is caused for a=g®
whereas o=90° gives the largest radial displacement but very small
axial displacement. For the case of a=50° both axial and radial dis-
placements are medium. Of course, the largest displacements occur in
isotropic solid.

Eifects of integration time increment and relaxation time are sig-
nificant in viscoelastic analysis, These effects are even more critical

in viscoelastoplastic analysis. Figure 11 shows effects of various
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Figure 10, Displaced Shapes of Cylinder (SP2) for Various Wrap

Angles (90 - o) Suhjected to Static Internal Pressure
of 2.24 psi - (eometry Case .3
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values of relaxation time for a constant integration time increment of
,001 sec, with an isotropic cylinder subjected to internal pressure of
2,275 psi. For T(r) = .02 sec., the response is extremely erratic., A
slight improvement is obtained for T(.) = .001 sec. A stable solution
is achieved when the relaxation time is reduced to .0001 sec. at which
the ratio of At to T(;) is 10, With the relaxation time being the
material property in general the integration step size must be adjusted
for a given problem., Toward this end Figure 12 shows effects of var-
ious integration time increments for T(,) = .0001 sec. For the fiber-
reinforced cylinder of o= 50° and isotropic solid subjected to internal
pressure of 102.4 psi integration time increments of ,0002 sec., and
.001 sec. are used., For both material properties At = ,0002 sec. is
unsatisfactory. The smaller increment of At = ,001 sec. produces a
stable solution., In dynamic analysis, however, it is well known that
the smaller the time increment the more stable the solution. This is
an interesting contrast associated with viscous properties of the mater-
ial which tend to damp out a motion. Finally, infiuence of ramp load~
ing is shown in Figure 13. Once again a proper choice of At/T(.) is
needed. This ratio in general larger than 10 appears to be satisfac-
tory, although yield properties may require .even larger ratio, say 100
or larger.

Stresses are of fundamental importance to the designer. In Figure
15, viscoelastic stresses in directions longitudinal and transverse to
the fiber are plotted. This particular analysis corresponds to 0-500,
T(r) = .0001 sec., and At = ,001 sec. in Figure 12, although these
stresses are calculated for the element 1 which contains the node 1 for

which Fig. 12 18 drawn. 1t is interesting to note that the viscoelastic
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Response of (ylinder Subjected to Internnl Pressure
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stress increases until t = 1,5 x 10 sec. and decays asymptotic
to the linear elastic stress at approximately 3 x 10”2 sec, Suchdecay
may not occur for hours, days, months or ewen years depending on
the material property or here the relaxation time., For instance con-
crete creeps under sustained load and stresses relax over the period
of time, The relaxation time could be 100 or 1000 times larger than
used in this analysis. Such large value then would require corres-
pondingly large integration time increments to maintain the ratio
At/T(.) for stable solution. In such case the results that might be
plotted in Figure 15 would simply require a larger time scale,

Results of analyses of a cylinder-dome (Geometry Case 4) and one
with built-up section (Geometry Case 5) are presented in Figure 4.
For the cylinder-dome it is shown that a=50° contributes to consid-
erably less displacement than the isotropic solid does. The displace-
ment of the dome with built-up section is very small at the dome
portion but very large at the bottom of the cylinder portion (Figure

14b).
4.4 DYNAMIC LOADING

The computer programs DVP1 and DVP2 are used for analysis of
the structure as a thin shell and a thick shell, respectively.

In general, displacement of a structure under a load applied dy-
namically is 60% tc 80% more than that under the same magnitude of
loud applied statically. Consequently, dynamic stresses are larger
than static stresses, and design of the structure must depend on ac-
curate or realistic limiting stresses, A need for dynamic analysis
is, therefore, apparent when explosive pressure is involved such as

in missile structures.

3 A
h‘ &




54

The linear elastic responses of both isotropic and fiber-reinforced
cylinders (Geometry Case 1) subjected to internal dynamic pressure of
250 psi are shown in Figure 16, For the case of a= 50° considerably
smaller peak response is ohserved. It is also seen that for both cases
the dynamic peak radial displacements are approximately 807 more than
the static radial displacements.

The dynamic viscoelastic responses for the cylinder of Geometry
Case 3 subjected to dynamic internal pressure of 34,1 psi are shown
in Figure 18, Smaller peak responses for viscous behavior are noted,
Here the relaxation time of 10™ sec. with integration time iacrement
of 10® sec. is used. This gives the ratio At/T(.) of L. Such ratio
would have been too small for stable solution in the case of static
loading. For dynamic analysis, however, even At/T(,) = 1 is very
large as noticed by significant damping, particularly for a=50°, It
is expected that the ratio At/T(r) much smaller than 1 could provide
stable solutiom.

Figure 19 shows the dynamic elastoplastic and viscoelastoplastic
responses for the cylinder subjected to internal pressure of 102,5 psi
with T,y = At = 10™® gsec, Once again, effects of viscosity contri-
buted to smaller peak responses, For the case of o = 50° the peak
viscoelastoplastic response is considerably smaller than that for the
isotropic solid, but such difference is almost absent for elastoplastic
response.,

Dynamic stresses corresponding to these peak responses are al-
most twice as high as static stresses, Results of a static analysis,
therefore, would lead to unsafe design when such load is to be applied

dynamically to the structure in service,




55

e L8Ot TOPicC

$tevnn s ¢ (Y = ';oo

At = 10™ sec,.

[
~N
|

o
<

x

Linear elastic disp.,
isotropic

-
-~

Radial Disp. st Node 1 (1072 in,)

¢ \
Lincaroelnotic disp.,
9 s 50
20 40 60 80 100

Time (10°® sec.)

t*ipure 16, Tinear Flust{ic Response of Isotropic and Fiber
kReinforced (ylinder Suhjected to Internal
Preasure ol 250 pai - Geometry Case 1




56

. € 988D .a33w09) - 1sd
ISS 1°%¢ 30 9danssaxd (euiajul aarsindwy o3 pa3dafqng IapuiiAd
Io asuodsay 1erpey 2313serd IBAUTT pue OTISEIIOIST,

L0998 U1, awtl,

.1 2an813

*238 .ulU.H = 37

‘298 01 = (°ig

o0S = 0 ‘DIISEIS0IBTA = e u
97d0I308F “‘D7ISRII098FA — . —

o0S = T ‘DFISBII IABIURY +evsecces
d71dox3esy ‘d>33sera aeauyq

-t
.

(*u3g_01) 1 @poON 3Jo Judwaderdsyy [ Fpid

1
N
.




57

----- «+ Elastoplastie, isotrogiv
———  Elastoplastic, a = 40
- =~«= Viscoelastoplastic, isotropic
o~ ==m Viscoelastoplastic, o = 500
Tee) = 107 sec,
7 b A = 107° sec,

PN L ]

ﬂ LY

wi ‘6 o 'C. ..

. Ld 3

.o '. .o .

c os"" o. °‘. !

- N .

. - -

$ J4r NV ™\

; .',/ A

: .8 o 0‘_'0:\

- .

i - "

b I

o elp static lin- ',

Ey ear elastic, static Iinear

a 0 , lsptropic . elastic a = 50

.; 10 20 30 40 ° 7080 90 100

-

3 ~s1 "

Time (in sec.)
-2F
I Figure 18, Viscoelastoplastic and Klastoplastic Response of ;
Cylinder Subjected to Impulsive Internal Pressure of

102,5 psi - Geometry Case 3

=
/,




58

SECTION 5

CONCLUSIONS

Theoretical formulations and computer programs for the analysis

of thin and thick fiber-reinforced arbitrary axisymmetric shells sub-
jected to static and dynamic loadings with diversified material pro-
perties such as viscoelasticity, elastoplasticity, and viscoelastoplas-
ticity.h;ve been presented,

u Adequacy of anisotropic ecress-history-dependent yield parameters
f modified from Hill's yield criteria and internal or hidden variables
approach for viscous behavior has heen demonstrated. However, the
misotropic parameter corresponding to a plane - stress in the
fiber-reinforced thin shell is not unique as fibers change in wrap

% angles, It is, therefore, necessary to analyze the structure as a
thick shell in which a three dimensional theory is utilized if yield-
ing of fibers is to he involved,

Dynamic stresses are larger than static stresses., Although de~
sign calculations may be carried out with static equivalent load actual
% dynamic responses for various geomettical and material properties are
too complicated to be guessed at from so-called dynamic "load factor",

Viscoelastic stresses are large initially but decay as time elap-
b ses, If the structure is under sustained load creep and stress relax-
ation may be important, However, seliection of relaxation time must ;
be made carefully because such viscous hehavior may he exhibited for

only a few seconds to months or years. ]
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APPENDIX A.l

STRAIN DISPLACEMENT RELATIONS FOR A THIN SHELL

1.  KINEMATICS

Consider the location of a point in the undeformed shell defined

by the position vector

r=x i
where ;
x, =x, (¢, & ,8 =2 3
Thus, ,z
remtan W |
where v, is the position vector of a point on the undeformed middle surface

-~

and n = n (g}, #) is a unit normal vector to the middle surface. The

square of the length of the line element is given by

(dsy )" = dredr = g, gde¥debigy,d€ de® () ;
whera dr = dr, + d(z_rl) = dfp + dzn + zd_x}_ ) )
with v, R=1, 2and i, j =1, 2, 3
Thus, §

(ds,)® = dr, *dr, + 2dzn'dr, + 2zdn‘dg, |
T ’ %)
+ 2% dn+dn + dz” ‘ §
Now,

B B
(44
drﬂ .drﬂ= rﬂﬂ dg .rﬁ ’Bd" = a(y.aﬁdgad’) = aaadéydg

is the fundamental form of the middle surface where aa = the first funda-

B

mental tensor. 3

g
dn.'dt,’ = n ’fﬁdtadﬁ = -baﬂd!adt_e is the second fundamental form of

-~

[y




62

Figure A,1.1: Coordinates for Shell Deformation
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the middle surface where bag = the second fundamental tensor,
dn.dn = n a.’e' Bdg‘”d!B is the ‘third fundamental form of the middle
-9

surface where

A M
c =n °n_= (b a * (b, a
AR - B ( o “‘A) ( P '-41)
ALl A
=bb = b
o B aim wbm

= third fundamental tensor

Substituting these identities into (4) gives

(d8,)" = (a,.- 22b  + z"cdp)dg"dg’ + dz° (5)
Denote that
8,8 ™ g 2700 * e g
8o " &o " 0
s = 1

Now, after deformation, consider the new position vector

R=R+m | ®
and the squared length of the line element on the deformed surface is
given by

(ds)? = dR°dR = G“ dret d&)

o, P
G,p 45 aeh+ cmdg"dq% Gadf de

L 8
A, +2N) - @ ot zE’p)df( de

+ (A +2zN ) Nd® d@ +dz°
- Y ~’a -~
B

4
(Aaﬂ - 2zna +z'caa) de de ¢))

]
+ (A +2N ). Nafd€+ dz?
& Tegat e




where
- - ]
Qyp A&p 2‘%&9 +z C&p
G = G ™ By zE,a) "X
Gz = 1
and, Aap‘ﬁy'ﬂﬁ',‘}a-.&h“ ’f’-;’!”ﬂ
B_ =N +A
ap ~a ~ P
= . = .}\ o.u'
Cup " Mg T Mg CH A (L)
L A
= B -
%1 ] AAH %N BBA

The difference between the squared lengths of the line élements on
the deformed and undeformed surface is:

ds” - ds? = 2v,, dg} dg!

B

o a3
= 2Yag dg dE + 2V dEdg + 235 dz"

. e ) - . e - .
(A =a ) -22(8 b ) +27(C, ¢yn) d#ae

8 of
+20N A 4NN ) ag af (8)
AU - ~ 0¥
so that
/ = L - - - 2 -
B %[(A(,,B a,p) =22 - by )+ 22 (€0 - c )]
Vo TN A E AN

Yaz = 0

Denote the middle surface membrane strain as
e n " E (Aorﬁ - aozB) 9

But,

A ”“:),q = (5) +9.),Q' =£9’(X+E_’a g..a.,q+2,(x

a +u_+a *u +u *u
- Y ~8 ~ B oV~ R
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Thus,
- w,+a u_+u - 10
edB %(gaf ~s 8 ‘9' B 3'90’ 2:0 2"'” ) (10)
where
u-ua‘aﬂ-*ua.r‘l. (11)
g 3
Uy (v a )’a+ua’ap_+u2
=B B
“,aﬁa"'“ 2a,a+“3;q3.+°32,q (12)
in which
a =" 2 +18 n= & +bp

~B,a ay --“a mau w'*u: &y-ll
vwhere Christoffel symbols,

3 s
' = .a [ =g *ns=

‘'n =DH
Por ~ Byy ~ . ~ Byx

g‘ B~ By

Hence,

u = (u“'a+ * uha 4+ Wb n+w® n-ub’a
?

Y m ~ b B~ oL ~ Q =~ u
= (uu + ]"Ll uEi-lx"’bLl Ja + (uab + ) n
s Ba a =~ ag " -~
= (uhl - Pl )a 4+ o+ uBb n (13)
lo a '~y 50 aB ~

where
u"l = uu + F“ uB
la .0 Ba

and the "|" represents covariant differentiation,
Using (13) in (10) ylelds:

ey =42 '[("Lllﬂ - u“bE a4+ oM bﬁu)g_]

+ a ‘[(u“1 et ya + W@+ uth )n)
"B e a~wm an’ ~

QL

e, o 6+ o Ao

»

+ @, +d'p
(u’B +u BL )E 1

S RAEE




= -2 . K M
% [ual 2@b _ + (u Wb )(u|B -u‘"bB )

+
B Bla T e “ua " Ha

3 Y
+ (uia + qual ) " +u bBY N

Letm=N-n, N=m+n

~

Denote the change in curvature tensor as

=-B =-b )=A N -a °
g = Cag " Pog) TAa Mg "% R

= (a +u *m_-u *b a
("' o “‘:a) ~B  ~a B ~

Denoting m =  a a + mn , then

= u - u +
mg ™ (ng by da, + e mh, On
and u
= -mb + - mb
X8 " alp T ™ap t Gl ¥ )(mls g’
] Y M
+ @+ uxb Ym _+m b_ ., ) -b a
sQ aX B BY B(uu!a u bu 0.)
since
a *a_=¢€ n
~a =B aB ~
ecsaa’ga'eaaesg'h
nevefa vag
similarly,
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(14)

(15)

I[f the permutation symbols in the deformed and undeformed surfaces

are the same (small strain); i.e., EGB = e*aB , then

< ford B _)\B Y 3 n,, O
m= u,a u baB € EaY(ulk uw) @ 8 + banu )} a
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o _.a as Y .Y A _ ko3
"'{“’a ba‘f’""ie GYK (U'a balP) (\l'B bBu)}_E

We define

m = -u_-ufb -em

n
o ta G.B ,l U ) (U "anU )

m =u(|"u-ba

o +k€ € (u| -baua) (ullB us)

/\aB”‘ Al (mu‘a - mb )(m - mbu + (m 4+ m"'l b Ym + mubﬂu)

IB G Ol . ]
- (m”a - (m)\“_3 - mb )b ]
So finally,

Y = +2X _+ 2%
o8 eaﬁ “ag zAa.B

The shear strain is

A + 2N * N
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2,  SPECIAL APPROXIMATIONS
For large deflections but small rotatioms
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Figure A.1,2: Approximation for Small Rotation
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or, neglecting the nonlinear term, 8
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Love-Kirchhoff Assumptions
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(1) points which lie on one and the same normal to the undeformed

middle surface also lie on one and the same normal to the

deformed middle surface.

(2) the effect of the normal stress on surfaces parallel to the

middle surface may he¢ neglected in the stress-strain relations.

(3) the displacements in the direction of the normal to the middle

surface are approximately equal for all points on the same normal.

Assumptions for Love's strain-energy expressions
(1) the shell is thin, 1. e. h/r <1

(2) deflections may be large hut strains are small ﬁyp

*
= e

af

(3) strain energy is a quadratic function of the strain components

1
¢ =3 BV ¥y, Vi
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(4) the state of stress is approximately plane, i, e.,, the effect
of transverse shear stresses and of the transverse normal stress,
acting on surfaces parallel tc the middle surface, may be ne-
s lected in the strain energy density. For thin shell, terms

with z® = 0 and y3= 0, For shallow shell, u"a > "ap“ﬂ = 0,
]

3. CALCULATION OF FUNDAMENTAL-TENSORS '

Figure A.1.3: Surfaces of Revolution
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Since a, " b12 = 0 we say that the meridians and

parallels are lines of principal curvature.

R, = Radius of cur-
1
vature of
meridian curve
Ro(x )

Figure A,b,4: Principal Curvatures
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- sign signifies R, 1s opposite to direction n. To check if

aaB and R1 and R2 define is valid surface we use Coadazi equations
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4. LINEAR STRAIN-DISPLACEMENT EQUATIONS (NOVOZHILOV)
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Let
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For a shell of revolution

Let Al = 1 AZ =r
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Novozhilov strain equation
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1. ISTROPIC YIELD FUNCTION
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APPEDIX A.2

YIELD CRITERIA

The von Mises yleld criterion, one of the most widely used, is
discussed herein, Von Mises suggestcd that yielding occurred when the
second deviatoric stress invariant J reached a constant value ¢ called

equivalent stress such that

£=5% =31 =3, - (3)

where f is the plastic potential function, and T,,, is the octshedral

stress defined as

e s e e

S —— - - - o 2 2 "

1 V- 2 o uﬂ s
Toct = 3 (011022)" + (Uan=043)° + (032-013)° + 6(0y gtog,y+iyy)
(2)

Together with Drucker's postulate that the yield surface is con-

vex and the plastic strain rate vector is normal to the yield surface
the Prandtle-Reuss flow rule for isotropic hardening material as Je-
fined in (2.8), Section 2 will he employed in the present study.
Following the procedure outlined in the expressions (2.8) through
(2.19), we obtain the explicit physical :components of the teusor of

plastic moduli,

E(p) +2 bz €Y
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where E is the standard elastic matrix and
[
: 30‘11 3(79. 303’3 3012 30” 3031
Tl = % 75 5 =% (4)

! ’ !
in which 0y, , Ugq, and oy, are deviatoric stresses.

2. ANISOTROPIC YIELD FUNCTION
2.1 THREE DIMENSIONAL SOLID

Developments of anisotropic yield criteria have rvolved for the
last two decades, The directional anisotropy was studied by Hill (8]
using the von Mises yield condition and its flow rules. He chose
yield functions such that the von Mises criterion for isotropic solid
is restored when anisotropy vanishes. Such yield functions were used
also by Tsai [22], Pulton [7 ] and others. The formulation, however,
is not convenient for numerical scep-pby-step computation., Hu [10]
extended the Hill theory and introduced equivalent stress-strain re-
lationships in appropriate form, using simple uniaxial and shear
stress-strain tests on coupons cut in the dircctions of the ortho-
tropy. The anisotropic parameters were held constant. However,
experimantal evidences show tha: anisotropic parameters f-r strain-
hardening material depend on the state of stress and should he up-
dated as the stress level changes, Such procedure was used by Jensen
(11] and whang [23]. 1In the present study the yield criterion of Hill
as extended by Hu and further by Jensea and Whang will be specialized
for fiber-reinforced shell siructures. Additional discussions con-

cerning coordinaste transivimatiscns c:e given in Appendix A.S.

¥ Tl 3 43R
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For the case of anisotropy the yield function (2.6) is given

explicitly,
1
f=5°= 2 {A12(01170g)? + Aga (Ogg-0a3)* + Agy (043-0y, )%
2 2 2
+ 6(A¢q0yg + AiOgy + Ass03,) ] (5)

where A5, etc. are anisotroplc parameters,

Setting
Ay = Mt Ay
Apg = Ayg + Apy
Aga = Ags + Asy
=2 1 2 2 2
f =3 =3 { A30y1 + Agaias + Asa0as - 2(Ay901109s + A330ea0aa
2 2 2
+ Ayy03a03y) + 6(AgqU1p + Agg0gn + AgeTay)! (6)

Differentiating (6),

doyy

do = ‘2-(_)"" (A110yy = ApgOga - Ayp033)

dogy
t 5= (-A1g011 + AguOas - A2303s)

daya
+ 55(-A1011 - AgaOng + A33033)

do;. do.a d()al
T (3A44019) + (3A50g3) + ~—— (3As0s,) )
o] G o

+
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Tt is seen that (6) reduces to the isotropic yield function (1) if
Ay, = Agp = Ay; = 2 and all other anisotropic parameters are equal
to 1.

The anisotropic parameters initially depend on the initial yield
stresses in various directions. Let O(,) be the equivalent initial
yleld stress in the 1-1 direction and all other stress components be

equal to zero, and set

T(0) = To)1y (8)

which gives from (5)

- 1 ]
Ug) = E(A(o)w + AC0)31)%0)11

or

Aoz + A(g)ay = 2 (9
Similarly for che 2-2 direction,
Yar = U(p)am
3(2) - %(A(o)xa + A(o)zu)”?o)ﬂ

6.(o)

Aloyra + A(p)es = 2 (10)

Oto)as

and
Jaa ™ T(o0)ay

53 1 2
(o) =5 (Acoras + A(0)31)9(0)a3
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Toy |2

O(o0)asa

Ato)as * A(g)ay = (11)

Solving for A(g)12, A(o)ga» and A¢q)zy from (9), (10), and (11), we

get.

2 2
2 G(olaa ~ 9(2)as

A(ona = 1 + 0(g) 0?'0");30'"?0“)."' (12a) 3

2 2
8 [6Co)sa + U(oles ;

Atoyas = ~1 +a(g)| )
3(0)an%(o0)nn (12b)

a2
2 {Of.o)u = O(o)ua
A(gyay = 1 + g ) " (12¢)
9(0)33%0) 32

Similarly, we determine A(g)44s A(n)ss. and A(o)es as

oy \® 3
Atodes =3 (124)
U(odra
- b
(o) |2 g
A . = J'. B ——— (128) :
- 2
{ o)
Aoy = 3 Yo)au (12f)
Let
Acoyin = A(oyrz t+ Ao) ax =2 (13a)
E(o,
A(g)as = A(o)12 + A(p)es =2 O(0)an {13b)
{ 6(0)
A(g)aa = A(o)as + A(o)ar = 2\6(0)33 (13c)




82

These initial parameters do not remain constant as the material

undergoes strain-hardening. The subsequent anisotropic parameters

should depend on the current state of stress, equivalent stress, and

hilinear plastic moduli for various directions. We make usc of the

fact that plastic work performed in the current stress space and

equivalent stress space for a given direction must he cqual.

the 1-1 direction,

(p) (p) _={p)
W = Ulldyll = ad¥ ,

rr (V)ee
5(0) } ?o)u'T Oarn2

(N

o

(l)///,‘d}}
o

gt I -
W’ i3’

Figure A.2.1: Plastic Work

From the figure above it is easily seen that
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o)1 ) ) 1 .
e (G . + e (5 o
E(”I‘ (l)11 (0,11 ZE(p):g ( (.)11 (0)1,.)
Y(o)an ( - 1 ( .
- e——mee (3 -c l_____ © -0
E(prgs (2138 7 T(0)2n 2F(,ras L (s)88 (0)sa)
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E¢p)
] pinng 2 " 2
a B cmmerm—— o - +q
(a)2e E( i1 loTuran- 9Corna ] + 9(oree
Therefore, the subsequent anisotropic parameters are, using
U(gdyy ™ 6:
g )a
Ay =2 =2 (l4a
o \" 25
Ag' = 2 =
(o) E 3 2
(alea ._(...2)_’: (‘;a - 0(0)11) + (o) aa
E(p)1s
(14b)
Similarly,
2
20
Any =
XK} E(p)au —n 2 .
v + 0(0)a: 14
Ecoin ( I(o)11) * 0(0)aa (l4c)
_2
[B]
Ass G(pire (_l s , 2 ] .
oons oY + o 14d
B¢ i1 (o0)1s (o)y12 ( )
)
n
A =
ne G piin _9 o s
o -9 +o : lbe
TR (0333) *+ (ol (l4e)

e,
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g
Asp =
G(pras ) 2
C oy @ - 9(on1) + 9(0res] (14£)
“p

where E(,) and G(,) are the plastic modulus and plastic shcar modulus

in bilinear stress-strain curves.

2.2 PLANE STRESS

For the case ot a shell subjected to the state of plane stress,

the yield function is written in the form,

> My oo Ase 9 2

f=0 =701 - Ag0110gs + "5~ Oan + M40y (15)

Here we can only provide two tensile tests and one shear test
which arc not sufficient to determine 4 parameters of anisotropy. To
settle this problem the yield stress in the direction of thickness of
plate or shell may be assumed to be the same as that of 1-1 or 2-2
direction [11]. This assumption was rejected by Whang [23] who sug-
gested additional tensile test at some angle from the axis of ortho-
tropy. In the present study, the later procedure is followed. If this
tensile test is performed at an angle 6 from one of the axes of ortho-

tropy, then (15) hecomes

3 Mg 3
0 = 5= o, cosh - Ao cos2, sin 29

+

a 2
5 8ink + 3ae47, cos 2, sin2 (16)

)
For convenience the tensile test may he performed at § = 45 which

[P IEAN
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will simplify (16) such that for initial yielding,

¥ A(g)y1y Aoz Aco)as 3
(o) = (o)s® L =g - =5+ =g+ 7 Alo)as]
or _ p
Atg)ir Ao)mn O(0)
Atonz = =5 + =57 *+ Aodas - 4 {GTT0 an ;

/

where Aco)11, A(o)aas A(o)eq are the same as in the three dimensional

case. The subsequent parameter Ay, [or strain-hardening is

-
Ay N Apga 4a(o)
Ara 2 2 A - E(g)4s® 2 2 2 (18)

g - -0 o
B (0)31) = O(ol)4s

where Ay;, Aaa, and Ay, are the same as in the 3 dimensional case.

2.3 ANISOTROPIC PLASTICITY MATRIX

With all anisotropic parameters defined it is a simple matter to

apply the associated flow rule to ohtain the anisotropic plasticity

matrix in the form

~~

[
| S

Dipia +2 D2 (19)
where the components of Z are given by

1 f

Z .= £
v B fa"waa
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3.  ANALYSIS

The linear elastic analysis is first performed to calculate dis-
placements and stresses, If the stress in any element exceeded the
limiting yield stresses then the plastic matrix as derived above will
be calculated.

For the case of a thin shell integration of plastic stiffness
matrix must he performed with each layer integrated one at a time and
summed through the thickness. Necessary equations for this process
are derived in Appendix A.9.

Details of elastoplastic analysis are also given in Appendix A.9.

D dder -
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APPERDIX A.3

DERIVATION OF INTERNAL (HIDDEN) VARIABLES

)
Consider the internal variasble (:I, s

t

(e) -(t-2)\ ¢

Rl .f exp( 'r(,)) Vi (e W
A

where \.(‘ ,(‘r) may be considered to vary linearly within the emall

time interval jt,

. . =(t-pL .
Vg (T = v, (t=pt) + l;jzzé‘qu,,(t) - v,,(t-4t)] (2)

Substicuting (2) in (1),
t-At t
(e) -(t-7)\ =(t-7)\ .
q (©) -j; exp(——.r-/-::) vy, (9)dr +L exp(—T:) Yy, (T)de

At
<Aty (¢) ( ) t
= oexpla— ] q,,(t-at) +
(T(',) 1) -

-(e-7) .,
exp ( T v, (M7
A AT € fa(e-Th
exp T, qu(t-At) + exp ( T(r) )fv”(t-/\t)

t
t-at

At-t+T
At

+ [V,,(8) = ¥, ,(t-pt)]1d"

%

e A

o S vl

P W Ao
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13 3 ¢

‘ At \(¢) (T ))

2 = exp | =~ (t-at) + exp| ~—s—= l )v (t)

1] p("'(n) MTh f Tees (¢ s
t-at

'(t"r))

z t TY). - Aty
7 1 * (At ' At) Viy (6a€) dr exp("m) Uy (eoae) + T"’{[uv( Ty

3 T

= B t -(t-7) T 1= (t-) () '(t"l’)) t

> ¥ - =—— ax —————) 4 ~— ayx S otn— ex 9 (t)
s & At P( Tm) At Pk Tcey] AT p( Tee ]““ H

. % e (e g -e-m)y  Te, -(t-r .
i § T exp( T(.-)) at cxp( Tm) T exp( "'m)g A:’“(t i

At \ () -5t t -At
p("m) H () [{ (r(, e | T

AT - exp(.r“’} b S e"P( . }Vu(")

¢ -pt t t-At -At T(l‘)
+ {=T1- - g — + ———
( exp( ) at A SXP (Tn )) At

L

”e
A )
T
=At (e¢) -4t 3
+ T "-cxp( )+--—fl-exp(—-)lv (t-at)
(r) [‘ L At Ty v
Teed At N
1 4 - —'_. - Y ratt—— v
O — T exp (T“)) }V”(t)] A q”(t et)
A ( )v ( )o
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(r) (r) (¢)
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APPENDIX A. 4

INTERPOLATION FUNCTIONS FOR AXISYMMETRIC

THIN SHELL ELEMENT

Let us consider an arbitrary axisymmetric shell as depicted
in Figure A.4.1. The nodal circlee passing through the nodes normal
to the surface are boundaries of each element. The deformation
state of each discrete element (Figure A.4.2) is described by four
midsurface displacements (Ref. [24]).

1) metidiqpal translation ¥,

(2) circumferential translation 8,

(3) transverse translation &,

(4) meridional rotation ©

The generalized displacements at nodes p and p + 1 for the ele-

ment with meridional length £ are:

at s = 0 at s = £
By,p = ulp) 9 ety ™ u(t)
Onsp = V(o) B p01 = V(L)
By,, = Wwio) 83,5ty = W(L)
sy (G * 5D, % * Gy gD,

where ¢ 18 the angle hetween the z axis and the line tangent to the
meridional surface, s {8 an arbitrary distance from the node p along

the meridian.
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Figure A.4.1: Discretized ArbiiLrary Axisymmetric Shell

Figure A.4.2:

Ceneralized Coordinates and Geometry of a Curved Shell Element
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The midsurface meridional slope ¢ is assumed to vary as

o(8) = ag +ay 8 + aps?
Assuming that the curved shell element may be approximated as a seg-

ment of a circle, the coefficients ay, a;, and ay are determined as

8y * @y
a - %(6% - 4“” - 2(99, ;)

o = o (30, + 39, - 60.)

The midsurface radius r(s) is given by

8
r(s) = r, +f sin ®ds

0
The shell thickness h(s) is assumed to vary linearly so that

h(s) = h, = F(hy=hyy)

The meridional variation of midsurface displacements, u, v, and

w may be assumed to be of the form

Uy (8) = u(s) = Cy + Cys (1a)
8g(8) = v(8) = C3 + C48 (1b)
8,(8) = w(s8) = G + C.8 + C;8® + Cqs® (1c)

The meridional rotation is, then,

8,(8) = 2—:;@)- + u %3-(2)- = Cg+2C,8+3C,8°+(Cy+Cy 8)m’ (1d)

Writing these four equations at p(s=0) and p+1(s={) we obtain 8
equations from which we can solve for the 8 comstants, C; through

Css Substituting these constants into (la) through (1d) we have
8, = S;aQy, O )
or 8y = v,y O )

In matrix form ,

T
|

{n

=

R ) (4)
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*38.-0.’_4,‘20.;_’ %')'L‘z_g—_, Yo = =+ 73,
4 L L L 2

48Py 9 bs _ 68" 4s , 3s°
*u"“:pol""_s%n' ‘glzgen'o‘%a"‘ﬁ""z‘a!"aw't‘l‘z_*'ﬁ_
248 ,8° 6s 68’ -28 .
Yas = +&ﬂ_,%7' i ‘1‘«8"—"'}'2'_
2 L 4 L L L
.
all other ¥,y = 0, @ =(35) ., etc.
Thus, the strain-displaccment relation may be written in the form,
Yop = ap € Xyp
The angineering strain vector in matrix form considering only linear terms

can be obtained by substituting the interpolation functions into the strain-

displacement relations,




S4

Yl = €y +CX‘.

Y, = %;(c‘ + Cq8) - (G + C38 + Cy8® 4+ cas')%-

¥ I R . i
> ®* i
3
i
X

2
+ ¢ -g-;‘- (G + Cs8 + Cy8° + Cy8%)

+(c;+c,s)§%@l+9_(cx+c,a)%z-}

i Os

Writing similarly for V; and v, 5, performing differentiation, and sub-

stituting values of constants, we obtain

o

tA=GCNQ9+2ZHQS8 (6
L3S

(x=24Q8

—~

x-

o

{

where

- -
100000
G=]010000

001000

PO Wa k- akilts

—

(0o00coo0

z2=]0000¢0O ~

hOOOOOCJ

The explicit form of W will be shown in Appendix A.6.
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APPENDIX A.5

TRANSFORMED ELASTICITY AND PLASTICITY

MATRICES OF FIBER-REINFORCED AXISYMMETRIC SHELL

L+  GENERAL
Two types of element, plane stress element of axisymmetric thin shell
and isoparametric elamenc of axisymmetric thick shell will be discussed,
Shear stresses in the plane of meridional and tangential directions
are included in the axisymmetric plane stress shell element whereas
shear stresses in the plane of axial and radial directions are incor-
porated in the isopcrametric sélid element, Coordinate transformations
between the local and global systems differ depending on the choice of
either plane stress eiement to be used for a thin sheil or isoparametric
element for a thick shell, Since the global coordinates for the thick
shell consist of axial and radial directions additional transforma-

tion for an inclined element {8 required.

2. PLANE STRESS LLEMENT

It can be &hown that the transformation hetween the local and

global components of strain for a thin shell is related hy

Ye .] coe?q cosq sin « sin®y Ve
Yeo | = | ~28tnncosy cosda-siny 2 simrcosy Ysg
ALY Lfsinﬂm ~coay simy . 08 Yo | (D
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The ahove notations are shovmn in Figure A,5.1. In matrix form (1)

3 may be written,

(L) (6)
Y =tY¥ ’2)

where (L) and (a) refer to "local" and 'global", respectively. It is

& simple matte: to show that the global elasticity matrix is in the

Lorm,

(¢) (L) ‘
b =T'D T (3
vy ) (1) :
in which D = D(,) + D(p) with (*) and (p) denoting "elastic" and i
(q) ;
“plastic". The components of D  are

(a)
Dy, = c®(c?Dyy + s3Dyg) + 483c?G + 8% (c?Dyg + 5%Dgy)

Anaianl

(a)
Dya = sc(e?Dyy * #%D;5) + (c®-8%)(-28cG) - cs(c®D,q + 87Dyg)

(a)
Dta = S. (C'D11 + S.D".) - “3'0.6 + C.(C.Dt. + l'b..)

PRI SRVENCPNEFIRLIY Y T TS P EA SRS LSS

(a)
n.: = ¢®8(Dy3-D1a) + (c?-8")G(-2sc) + cs° (Dyp-Dyg)

(¢)
Dn. = c'sz(bn-l);-a) + (33'9"16 e C.s.(Dl.'D.z)

()
Doa = c8”(Dyy-Dyg) + 28c(c®-5")G + c®s(Dyq "Dgg)

bl AP ot < PN IT LS LA, LAL TR PrIALm LN i s B S tea et e

(¢)

Dy, = c.\'B'D;‘ + C.Dx') - AS.C'G + 3.(8.1)1. + C.D..)

()

Dig = 8c(8®Dy; + c?Dyq) + 28cG(c®-5") - 8c(s%Dy4 + c¥Dyy) E

(a) ‘ g
Dyy = 89(8?Dy) + c3Dy,) + 48%cG + ¥ (s?Dy 4 + C2Dyy) .

vhere ¢ = cos® and s = sind . For axisymmetric deformations we

Sades Ak g £ ANas nen




Figure A.5.1:
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8y = Meridional displacement
@, : Tangential displacement
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69, Meridional rotation

Fiber-Reinforced Axisymmetric Thin Shell
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require that stresses carried by o fibers de) be the same as stresses

carried - fibers:fzza). This is satisfied by imposing the average

stress to assume the form

off _ 1, ap o
== +
" 2% T 9 'a))

However, the strain in each ply 1is equal to the imposed strain, This

(a) (a) (a) (¢)
causes Dyg = Dp; = Dy = Dyy = 0 and we ohtain the following form

(g)
of D .
{a) (a)
Dy, 0 Dys
(e) (¢)
b = 0 Dae
(a) (0)
Dy3 0 Daa 4)

which is the globally transformed fiber reinforced elastoplasticity
matrix. If the plasticity matrix is used as pseudo load the above

operations are performed separately without adding together.

3. PLANE STRAIN ELEMENT

Referring to Fig.A.5.2 the coordinate transformation of the elas-
ticity and plasticity matrix for a plane strain axisymmetric solid ele-
ment for a thick shell without bending may be accomplished in the same
manner as in the plane etress case if such transformation is limited to
a plane(vertical cylinder)., The global elastoplasticity matrix can also
be given equivalently by |

(¢) (L)

b =TD T (5)
4xb 4x6 6x6 6x4




Figure A,5.2:
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(W)
in which D is the sum of rcgular 3-dimensional elasticity and plas-

ticity matrices and T is related by

v ] [+ o 0 0 v, ]

:v, ] * s? 0 Y,

Yo 0 g? c? 0 Yy

Yeel 0o o0 0 c Yee

YeL 0 0 0 -8 i ) 1
Yro -O -2c8  2cs 0 ‘

where ¢ = cosy 8 = simx
() :
or AEES BALY (6)
If the element is inclined an angle ofep from the z oxis

(FigA.5.3), then T must be modified as follows:

gl 1 0 © c 0 -8 ip |
H
21 =10 8 ¢ 0 1 0 ne
g 0 c - s 0 ¢ Uz
or
£=R1
where
¢ 0 -8
R = e8 s ce
-88 ¢ -8¢
and X

AN AR e sl oo aweem Al T
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. ]
. c=cos @ , s = sin o
MWer , TM=0¢ , P=¢z ]
'r as dofined {n Pigure A.5.2. ,
The modified T then assumes the form, 3
. -
o, e 0 -38 ,
ok csc? s? cR3c
s®s® s c? 8?32
Ts
2¢8éc -28ct 0 83c-3%¢
-2888 2002 0 - 548%
_-Zci'l «2c8¢cs  2sc ~2ccss B

Here i‘_ replaces T in (5) for inclined element.

»d
[ ]

/4

Pigure A.5.3: Coordinate Transformation for [nctioned Element
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APPENDIX A. 6

STIFFNESS MATRIX (SYMMETRIC AND ASYMMETRIC LOADING)

Since the stiffness matrix for symmetrical loading is obtained as a
special case of that for asymmetric loading we discuss here the Fourier
harmonically-coupled stiffness matrix. The circumferential variation of

the displacements at any meridional station, s, may be expressed as

0 = ) S
u(s,8) = u( )(s) +Z u(’(s) cos j8 + Z a ! (s) sin 36
’-

1=
- ] @
(°) () ()
v(s,0) = v (s) + z v (s) sin 3§86 + z v (8) cos 30 (1)
J=} =1
(0) =~ (3 = ()
w(s,0) =w (s) + Z w (8) cos jO + Z w (8) sin 38
=3 =

where the unbarred and barred coefficients are defined as the "A" series
and "B" series, respectively. Note also that the circumferential dis-
placement, v, varies as an odd function, and, therefore, this coefficient
is associated with sin j0 (odd function) in "A" series. The "A" series
harmonic number j takes on the positive sign whereas the "B series har-
monic number j takes on the negative sign.

Similarly, we may write all the midsuzface strain components in the

form of Fourier series as follows:
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(o) = (y) < (y)
(0'30 = (0')0 + Z(GB)o cos j6 + Z ('é'a)o sin §6

(v) - (y) ® -
= e
Co™ Culo *+ 3 By B+ @ lcon s 0

,-1 Jlt

(o)

(°e)o = (o), z (e) cos 16 + Z (e sin j0

=
Bending Strains are

)

zx cosj0+zzjsinj9

y=3

z x sin 36 +z x cos 8 (2b)
3'1

ZX coaj0+z x ainje

1=

Substituting "A" series of (1) in (16) of Appendix A.l1 and setting
these results equal to the "A" series of (2), we obtain considering only
linear terms, the following relationships:

For the meridional wtrain,
2 > 1)
o-s"' 2 cosjB-Zw cos j0 %=
4= =1

&

(J)
= g: - QS‘; z cos j6 (3a)
)=l

iy
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»
\ i (9
F From (2a), (es)o = z (c‘)o cos j0 (3b)
J i
L 3
From Eqs. (3a) and (3b)
(H ig(") (4 m
} (es)o o VY 98 (3¢)
Similarly for the &hear strain,
1. 8 fem (D ® () 2
e = - — - p
( se)o . [ ™ (Zv sin j9) z v sin j6 sing
3'1 =3
®
.& ()
+ 3 Z u cos 36
=
3 (3 (3 ®
=(§"5’;"‘-!’;" sincp-j"':')z sin 30 (4a)
,:1
- -]
(3)
e =
R Z (9,0, oin 10 (4b)
y=l
9 (1) 3 ()
e = N v .y 4
( 86)o > —— sine - g7 (4c)
Omitting the Ffirst two steps for the rest of the strain expressions,
J ] J)
() v( ) u( ) ‘ w(
('9)0 = .t " sin ¢ + " cos © (5)
(3 ()
3) 2 (3) 8
. ow 9% du 9P
Xs da" tu 38’ * o8 ds (6)
g
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(9 €3
()
(0.2 [ 3 14
X.e . [j - roinww +c°8°a.
1 (1 ap m]

-rainmcu?v t13 Y @

() yfge (D g 1 a9 e

- 1]2 2 . -ha
L [r v +Zcosov » tu o3 dn‘P] (8)

For dome-ended shells of revolution (r = 0), the strain components
are obtained by taking the limit of the above aquations as r approaches

zero.

()
(1) (3 N 2u “)32
e - . . i
(e, lm (e) (e, =% v (9)
r=0 0
(1
(1 (3)
() _Q ax . i
(‘89)0 = lim (:s) = 1im 23 r 28 v sing - ju
r~0 0 i
ds
(9 s (D (3) o)
_B_EQ_! v .gl . u
= 1im Qs ds +rg":; 38 sin @ J&l".’g‘f 10)
=0 ar
ds
Note that, at r = 0, we have
o,
sin @ - 38 1
a[ ) N (3) ]
o (5 3 JV tu sino+w  cosp
e) = ]im (.) = 1im §£
90 0 90 -0 as

r=)
1_(4) i.(“ »
- v u ™ .
11:; {3 2+ 2 e+ coo¢+v5%(ta‘)]
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N (3) (59
T R "I
E B R (11)
(9 &( (,) 9_‘_?
Y T 1 (a ? ™ ) (12)
l <) (9 Kk ()
(1) (9 29—' ‘% -sin®w +rcos dﬂi -cinbcowvﬂrm (”]
X =1limX_ = lim T
8g 89 0 gs?s
w0 ﬁm ) gy
" (W tu a-') (i3)

Note that the first derivative lezaves the expression still singular for

r = 0 and, therefore, the second derivative is required:

4
(3 3 'EZF[J" + J cos v -(L-i-‘ru '?9 oin @
X = limY = lim
= * l“) 929_(” 3(” ) ]
- v - v _ Ow -
7 s 12 s o8 u Y, (14)

Similarly, for the "B" series part, corresponding pole strain dis-
placement relations are obtained by replacing unbarred quantities by
barred quantities and j by -J.

Now, introducing the displacement functions of Appendix A.4 into
these harmonically coupled strain expressions, it is a simple matter

to cbtain W in (8) of Appendix A.5 or in the expression,

«y () Q)

Y =X Q8 +2z4 Q8 (15a)

v T AR

¥
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in which m = cos ¢ aud n = sin ¢,

Y=cuR®

A“a& "
cn“aﬁ "

similarly.

For axisymmetric loading all terms containing j in ¥

+2zH08

Comparing this with (2.40) in Section 1 we note that
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0 1 0 0 -9’ -gé -gé ! -'e
E FLE I P S 0 0 0

T r r r
n ns 4 e ) ms | me? e’
r r r r ‘ ) o r r r
» n Ll e
| ]
o' l@w's)' o 0 0 0 -2 68
2 ‘49 | -2mn m, nsy| ~24m %1 8218/, ns\2is¥, ns
w2y po e
i .. R
-8’ | -nP's ‘ n nis s 85 _n [1°s?-2n8 [ 3ne®
r r ‘ "ﬁ _%; é‘z 1? b o r | r
I | |

are zero and

(15b)

(162)

(16b)

Note that C"Wyp in the nonlinear membrane strain term can be determined

with (15) and (16) substituted in (2.40 a,b) of Section 1 and all

stress components of daﬁ expanded in Fourier series the linear elastic
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; stiffness matrix of the form (2.45) of Section 1 can be derived explicitly,
kR P
1 (9 2 (4 ()

E] K =1hL Q"W Ta'Da’ W Qrdeds
3 N o YO
4 211
n? ' (3) (3
3 + 133 fg_‘ W Tb"pb' W Qrdeds (17)
Ay o
if where
b 100000
& a=(010000
K 001000
000100
b=l 000010
000001
E, 0 Eyvy,
D = 1
~ l-\'.eva. 0 G 0 .

EVge O E

Here integration along the meridional coordinates can be performed

using Simpson's rule,
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b APPENDIX A.7
4 EQUIVALENT NODAL LOAD VECTORS
e [ ]
% i
§
4] We consider arbitrary asymmetric distributed loads of py(s,8),
’ Pa(8,8), and p3(s,8) acting on the midsurface of the discrete element
3 in directions s, 8 and ¢, respectively. In matrix form, thcee'loada
' are expressed by Fourier series of the form, {
3 [} ]
(o) (3) (3 (3) (9
{; p(s,0) = p(s) + C p(8)+/, T  p(s) (1)
5‘ wmd =
i
vhere
p(s,8) = [py(s,8) , pa(s,8) , pa(s,8) ]°
cosj® 0 0
()]
[ ¥oalo sinjt 0 ~
0 0 cosjd
sinjy 0 0 1
3 = y)
1 ¢’ 0 cosfp 0
3 _0 0 sinjo
Deleting the last row of matrix 8 in (4), Appendix A.4, we write }
4

6 =8 Q9 & =4 8 )
3xl 3x8 8x8 8xl 3x8 8x1

FTAY
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where § is the 3 x 8 normalized interpolation function. The equiva-
lent nodal load vector Py in (2.38a) is derived from (2.20) for

harmonically uncoupled part,

L p 21
(o) (0)
Py, = ¥y p8)rdods
0

or in matrix form

ﬁ

l.o) (o) (o) (o)
.P. (8) rdods ‘[P} s P. s sereesly ]'
(o)

where )

L,
p; w Ayrds - ’of Pacs)h rds
0

L"‘\

(o)

Py p (') l.t‘d.

“'1

(o) L ¢

(0)
Py pa(8) Asrds

o
-
(3

(v)
27 Pa (8) X rds

N
]

'5) (9 , o

P; =2n py(8) Agrds - 9y Pa (8) Agrde
0 0

(o) ‘

Pg = 2% p (a) deo rds
0

{0} % (o)

P, = Pz (2} M rds
0

5

(o) (o)
211} ps (8) Agxds

"~

>
N

vhe’e




L2

M= l- g, ha =1 -3 + 265

Ml go2@? + @, e =

o= 3@t - 250, Yo = 20-G)? + G°]

For harmonically coupled "A" series part,

(3 o (3) (P
P = LA p(s) ¢ rdods
0
(o)

()
Here the components of P are the same as for P except for 2m re-
(o) (1
placed by w and p, , etc. by P1 ., etc, The components for "B" series

part are the same as in "A" series part except for , replaced by ~,.
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APPENDIX A.8

CALCULATIONS OF STRAIN AND STRESS

With nodal displacements available as a result of solving equa-
tions of motion or equilibrium we can calculate strains either by the
standard finite element procedure or the finite difference represen-

tation of strain-displacement relations.

1.  STRAINS

1.1 FINITE ELEMENTS

Using the notations introduced in Appendix A.4, the mid-surface

normal and shear strains and bending strains are

~ ) (3 C3)
TV-u"q e
6x1 6x8 8x8 8x1 (1)

wh =(3)
ere ,Y, = (e, Cig & Xs %.9 %9]

and j i# the harmonic number. Also, the engineering strains ¥ may

be written in the form (see (5) Appendix A.4),

() (3)
Y (g +2)¥ Q 8 (2)
x1 3x6 3x6 6x8 8x8 8x1l

1.2 PINITE DIFFERENCE PRESENTATION

From harmonically coupled expressions for strains as given in

Appendix A.6 we write the finite difference analogue as follows:




()

(9 dy (9
€ "Bs " Vs "Um "W Py (3a)
1 (5 (y)
e = ;. (ryvay - v, si®, - gu, ] (3b)
(9 3 (¥} (3) (1)
e =T [svg +u, siny, + w, cosy, (3¢c)
| }
() ()
X = Pas (3d)
k (y)
() 2. () 8BV, (5) oinycody, (4) ()
~ ';-[J"n ") Tt cosPvsy - T, vy tatu, ]
(3e)
x(;) 1 2 () cog®y (9
Xy = T L o Vs + ) -—-—-‘-—r. Ve - B 8in®, ] (3f)
where (9 (3 () (9
3 3 4 ]
e‘l.’pn, = ez:p 81’901 19
u’l - ? u. =
L 2
(9 ($) (3 (3
Srp+l - VMop ®lop+t 8.,,
Vg, * L ’ Vp * 2
(y) ( (3) ($)
839,4.1 ’Qa,p 43pt) " 4y
vz, = I ) Bey = 1
(3) (3)
() Berpr +8,, , P -9
r " 2 ’ P * 1
with » denoting midsurface.
Writing (3) in matrix form, we get

SRR SR,

PERRIICN PRVFOGTRTE ST N TS 77 TR

FRF SRR UCINCS AR S - e
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-(3) () (9
Y =3 8 (4)
6x1 6x8 8x1
and .
(y) (§) (9
Y =(6+ 2)B 8 (5)
3x1 3x6 3Ix6 6x8 8x1
2. STRESSES

The Fourier series representation of stresses is

n
n
(o) () () z ()
g=g +) € g + c'g
- ‘-l - ’.1 -~

(3 ~(3)
where C and C are defined in Appendix A.7.

(3 ()
and 0 'El , etc,

"3, STRESS RESULTANTS

The inplane‘&ptress resultants are

h h
2 2
N, -f o dC , M, -f 0, ¢d¢
“h h
2 2y
2 2 .
N'e = Osadc ’ Mse = osea.c (6)
h ’h
2 2
h b
Ne-fz 0t , My .fz T ed%
h b
2 5

ot AL i e

N
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The stress resultants in the (-direction are given by
&4. sino mse sin®
Qs - 3;_ + r M + r 00 " “e
M 2sin® oM
18, ol 1}
B " T Yt (72)

Once again these equations are expanded into Fourier series for
sumnation, It is also convenient to write (7a) in harmonically cou-

pled finite difference form,

(9 "“) L - “(’: 31“"- (3 (3

Q = "?'LL 2 4 [M ). - (My), ] +"‘ (My9)a

(9 (3) 2sine, (3 "(;’wl’ “(”v

% - -%(Ms)“ + ry ("se . == L — (7b)

4. STRESS RESULTANTS THROUGH LAYERS OF COMPOSITES

If the shell thickness consiste of n layers of composites we

write (6) in matrix form,

1]
- z f (Jh at . ) (8a)
h

kel k=1
n

¥ - Zf ot Lag (8b)
kad h

where x denotes the k-t-l-‘- layer,
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APPENDIX A.9

ELASTOPLASTIC ANALYSIS PROCEDURE

1.  GENERAL 3

The yield criteria and coordinate transformation of plasticity
matrix together with elasticity matrix are discussed in Appendix A.2
and A.5, respectively, The yield criterion to be satisfied is checked
in the local coordinates of the fibers, which requires transformaticn
of global strains and stresses to those of the local coordinates be-

fore the state of yielding can be determined. In what follows we

discuss procedures involved in static loading. The viscoelastoplastic

analysis for dynamic loading is discussed in Section 2.8.

2, INCREMENTAL LOADING PROCEDURE

As demonstrated in Section 2, the incremental equations of equili-

brium is of the form

(o) (p)
or
(¢)
Ky dBM = dF, (1b)
(o) (p)

in which Ky, and K,, are elastic and plastic stiffness matrices,
respectively; and d8" and dF, are incremental displacements and
applied forces. It should be noted that in the above equation only

the static elastoplastic behavior is considered for simplicity.
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The given load is applied in increments as shown in Figure A.9.1.

k.

Por convenience one dimensional case is illustrated here. For a typi-
cal incremental load the incremental strain to be reached is shown in
Figure A.9.1(b). Point C is reached through several steps, each step
consisting of solving (1b) with updated plasticity stiffness matrix
K::’ which is calculated from plasticity matrix ﬁuﬂku. The above pro-
cedure is referrred to as the tangent stiffness matrix.

An alternate approach is to rewrite (1b) in the form

(o) (p)
Koy d8M = dF, - Ky, d68" (2a)

If the load increment is sufficiently small it is possible to write

(2a) for a load increment step (8) as

(o) (p)
Kyy dBN(s) = dF,(8) = Kuy(8)d0"(s-1) (2b)

This procedure, called initial sttffnee; method, is illustrated in
Figure A.9.1(c). 1In this case each iterative cycle is controlled from
initially caiculated elastic stiffness matrix. The product of plastic
stiffness matrix and the incremental displacements of the previous step
serve as a pseudo plastic load. Although this procedure is simpler
than the tangent stiffness method, it requires more iterative cycles

before convergence.

The transitional and unloading elements which turn to plastic
from elastic and plastic to elastic, respectively, must be treated
accordingly. For an element whose equivalent yield stress 8 is less

than the current yield stress amnx at the end of elastic analysis or




do
dFy > dog &
2 ] B ay
dpi => dOl n
A
——
d‘f’ dY’
b b
dg, dg;
(a) One Dimensjional Representation of Stress-Strain Curve
do | do |
C
B dy B dY

(b) Tangent Stiffness (c) Initial Stiffness

Figure A.9.1: Procedure of Incremental Loadings
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previous increment, it is likely to expect faulty incremental equiva-
lent stress dGy larger than actual, It is easy to show, however, that

correct déa for such transitional element is given by

- -(’) - -
S, = E(p3dY,  +G -7 (3)
where
-(9) - - -
d, = (0 +dg, - omax)/(E + E(p)) )

For the next cycle this element is no longer transitional but elas-

-(p)
toplastic, 1In this case dy, above is modified to

(pd

() ]
dvy = [4%° + G +d5 -5 )/E) 52

B ) (5)

which 18 to replace d§§p> in (3).

For unloading element dG becomes negative. In this case we simply
set Bubkp equal to zero and only the elastic properties are used in
the next cycle,

Whether tangent or initial stiffness method is used, the proce-
dure begins by scaling displacement and stress in order to create
impending yield (the elastic load limit of the structure under the
given loading pattern). After the elastic limit is found status of
yielding is checked for each element and the plastic stiffness matrix
is developed. The incremental displacements are calculated until
convergence with updated plastic stiffness matrix. The acceptable per-

cent convergence ¢ may be defined as

¢ = [{EG + &,)8 + 56 + &,)%)/5@ + Gy 1t

O A A a0 ke S8l o




An acceptable convergence is considered to have been reached if ¢ 1is
i small, say, ¢ S 5% - 10%, A new load increment is initiated and the

above steps are repeated until application of total load is completed.

3. INTEGRATION THROUGH THICKNESS

()
Calculation of plastic stiffness matrix Kyy 18 performed by

*(K)
summing the integrated plastic matrix D through the thickness of the

shell, It is possible to write

* %*
(p) D ¢D
Ko=) Qwl, . l¥Qdv
¢D ¢*D
v - -

hek)= higay)

w
5
0
®
1%
a
o
"
M:
ot
»
P~

K=l
* *(K) a
fDCdC = Z D (h?x) - h(x.3))/2
K=
and
n
* *(K)
fvc'ac - Z D (h(xy - Wx-13)/3
2
we obtain h(x)= h(x-1) (htxy= hix-1)/2
(p) L 2n (x)
K& = gw () b W Q rdodg
3 3
> Y0 - (hder= hexa1)/2 (heey = Bixag)/3

Here h is the thickness, (x) represents the layer number, and Q and W

arc defined in Appendices A.4 and A.6, respectively.




APPENDIX A.10

DIRECT NUMERICAL TIME INTEGRATION SCHEMES

1, GENERAL

If the dynamical system is linear and has a simple geometry, the
mode superposition method may be used, in which the forced response
for each mode is calculated by way of the Duhamel integral or any equiv-
alent method and the total response is obtained through superposition.
This approach is especially attractive if low frequency bands of exci-
tation dominate the applied loading. Even for a large system, conden-
sation or component modal reduction schemes can reduce the probhlem to
manageable size without significant loss in accuracy, provided the
applied loading has this low frequency domination.

When high frequency excitation is significant, however, the cou-
pled equations of motion of the system can best be solved by direct
step-by-step integration. ilowever, choice of inadequate integration
operators result in unbounded solution or unstable solution. In the
following, we discuss various integration operators and the solution
stability.

2. FINITE DIFFERENCE OPERATORS AND ERRORS

The basic differential equations of motion are expressed in the
form of recurrence metrix of finite differences to solve dynamic re-
sponse of structures based on the following assumptions:

(1) The continuous lapse of time during the motion is divided into

a series of small finite and equal time intervals., Within each time




interval, the motion of the structural system can be described by an

ordinary linear differential equation of motion.

(2) The force excitation, or the displacement excitation applied
to any part of the structure can be evaluated numerically at any de-
signated time,

Numerical integration techniques fall into three rather broad
categories ~ explicit, implicit, and predictor-corrector techniques,

1. Explicit method

a. Forward Euler formulas

b. Runge~Kutta formulas

c. Open-end integration formulas (predictor formulas)
2, Implicit Method

a. Backward Euler f'ormulas

b. Closed-end i{ntegration formulas (corrector formulas)

3. Predictor-correction method (mixed explicit-ipplicit uethod)

3, PARABOLIC COORDINATE

The choice of the finite-difference equivalents directly governs

the accuracy and performance of the procedure, Consider the equation

of motion,
W+ K@-F

Introduce a small time interval At,

At = t! - t‘-x

Writing Q for a parabolic variation of @ within the time increment,




8, = Goysl@e1 - 28, + 8u) (1)

Substituting in che equatfon of motion

M a7 Brr - 28,40 ) + K8, = )
€41 = M'EQO) +[2 - ¥R B, - 8 5oy ©)
u'(__——w un#
Up—g

T

TN |
At LI

Figure A.10.1 Parabolic Variation of Displacement

For free vibration with single degree of freedom

Buy = [2 - 2000, - o, )

Introducing

A, = Ap" (5)
where A is the arbitrary constant to be determined from initfal con-
ditions and B is a number to be so chosen that (4) is satisfied,

Substituting,
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2

Ap™*Y + [E(ae)? - 20ap" + ape-t = 0

Dividing through by Ap»-1
B+ [2A0)" - 20p+ 1 =0 (6)

Consider various ranges of At

(1) 0 <At <2f$

First investigate At = /2 /'E = ,225(2n)/ i‘- 8o that At = ,225 T

vhere T = (%{-' » natural period of the system. 1In this case Eq. (6)

becomes
p. +1 =0 (7)
= 3 - = t = -‘—TT
pe=+/1=T1=et (8
Substituting in (5),
1 ¢, 1Y 1T

————

8 =ac® +Be ¥ =a'ainT 4+ B cos -

2 2 (9)
Since k
t . m
n=E Tt

Eq. (9) can be written,

8 =a’sin1.11 tj‘% + B’ cos 1.11 c\/::‘-‘- (10)

In this case, the effect of the numerical integration method is to

increase the effective natural frequency froem 7% to 1,11 /E:— without

introducing damping or build-up of the response.
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As At changes from 0 to %/GE , the factor in (10) varies from 1

I .
toz.

(2) at >'/3“T

Consider first At = 34/55, Eq. (6) becomes

=

B*+ 78+ 1 =0 (11)

giving

B = -,1459 = - L4925

B = -6.8541 = -el*925

Substituting these into (5),

«1.925a 1.9254

@, =a(-1)" e + B(-1)" e

= A'cos n m sinh 1.925n + B’ cos n m cosh 1.925n (12)

=t .
Substituting n At i//.—

¢, = [’ sinh .642 t/-:;‘; +B' cosh .642 t [5 ] cos 1.047 :/-E-
(13)

wig |x

‘i;F]

The primary effect of numerical integration methods is to introduce
hyperbolic functions of time in the arswer. Since these functions
increase indefinitely with time, the rasult is divergent,

For all values of the time incremen~ i¢ 3 /é., divergent soiutions

of the time (13) result.
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4. CUBIC COORDINATE

Writing the acceleration and velocity for a cubic variation of
® within the time increment,
5: 3 1 ¥ ’ J
. Q‘ - (At)' L zgl - SQn-l + 49,2 = Bu-als
(14)
; Q’ - -6-%? [ 119)‘ - 189_,‘.‘ + 99_“_' - 22‘.3]
;
}
i Figure A.10.2 Cubic Variation of Displacement
|
3 Substituting into equation of motion
1
!T&t_)' [294: N 59:\-: +48,.5 - 9,:-3] + K9, = F (15)
or
i 2+ M.""‘E(At)')?;u = MTIFAt? + 58,.1-48,.4 + Yy (16)
For free vibration with a single degree of freedom
(2 + "l;'(At)’]On- 58,y + 40,.q -0, 5 = 0 Q17)
E

Substituting (5)
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[2+ X actlap® - sapa-t + 4apa-® - ag»~2 = 0 (18)

Dividing through by Ap*™®

[2 +§(Ac)"]a' - SP +4p-1=0 (19)

In this case, the errors are a small drop in natural frequency, ,961
in place of 1 due to the presence of decaying exponentials., In the
limit when At—0, the coefficients 2,32~ « , ,0095 - 0, ,961 - 1., The
solution approaches the exact solution as At approaches zero,

Case (3). To judge the errors for large values of At consider

At = 98!'%

. ; k
0 = ae usosﬁf NRBELDYEY

X(B' sin ,183t J—E + C’ cos ,183t E)

The errors are a large drop in natural frequency, .183 in place of 1,
As At~ ® we have coefficients ,805, .1424, and ,183 <~ 0, It is seen
that large errors may result for large values of At, but they will be

always convergent.

5.  GENERAL FORMULAS

Consider a time interval At and assume variations of acceleration
to be constant, linear, of a step function, or of any other form. For

example let us take a linear variation,
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3 0" . .. t
@ =8 + @ha- 8) 55
By integration,
. °”" . .
8= 8yt + By~ 857+ @
where ¢, = _@_,. By substituting t = O
S m b, b+ By - B s +0
Q.-J t+ (@.Ml - 0,) 2A¢ + U,
By further integrationm,
. t. (1] . ta
=8, 5+ @, -8) g +8 + e (20)

where c. = @ . By substituting t = 0

v g® e T
8= 85+ @, gt + 8

At t = At we have Q'@mh =0 .

S~

e
-
[ ]
@
-]
|~
r
+
o~
L@
+
-»
'
e
_J
S’
NID
-
+
@e
]
@
o
+
£33
~|>
cr
+
®:
3
-
>
r

= @4t + % 8,(ae)* + -}; :®'_,,,,1(At)’

Newmark suggested the following general form of QM; and 8, y by intro-
ducing parameters Y and P which characterize, respectively, artificial

damping and patterns of acceleration between the time interval:

Bury =8y + (1 - V) B8t + ¥, ot (21)

Sa




By = 8, + Bt + (7 - B, (A + B,y (AL)" (22)
For Y = 0 produces negative damping

Y > < produces positive damping

. 1 (X3
n+ 3 = Qu + 5 At(@_u;)

<
§
1®-

N~ N

u ) v

P Unq
h / 1

. B.u-
3 Uy, 6

1
: _ -
]
3 b t
! -
At

Figure A.10.2 Step, Constant, and Linear
Variation of Displacemsnt

It can easily be seen that we must choose Y = % to avoid artificial
damping and B = %, B = %, and B = % correspond to accelerations of com-

stant, linear, and step function, respectively.

It is interesting to note that Eq. (21) resembles the truncated

Taylor series expansion with particular choice of coefficients,

8,,, =Y, +@lac +ay L)
Zn+y Ya ~nAt n 2 + coe

Fo} constant acceleration, B = %, we have

»
o

1®-
-
1®
L4

Outy = O, + G,0t +

P

:@:”'Ata + ;AC.

9.1»1 (23)

+
»Iz

4

. 2 At
1 =&+ 5
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Substituting these into the equation of motion for the time step cor-

responding to n+l,

. 2 3 o
Moy + KO, + 6,0t + 88, + S8, 10 = F,, (24)
or
A3 o . At.
@M+ K7 8,1 = Fory - K@, + 8,0t +8, =~ (25)

Prom this we calculate 8, , and ©

O,,3» subsequently,

6. RATE-DEPENDENT PROBLEM

If viscosity is present the general form of equation of motion

becomes

(26)

I®'
(@~
+
@

M8+ ¢

where C is the viscosity matrix.
Considering a constant acceleration and substituting (22) and

(23) into (26) for the n+l step,

or
(?_1_4' —2' Q' 'A-l""‘ —)®l+$ = FMI‘ - &*; 27)

where
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Recursive equations are then (27), (23) and (22) to be solved repeat-

edly for all time increments.

7.  QUASI-STATIC PROBLEM

In the absence of inertia force we have the equation of the form,

@

CO+RE=F (28) §

Either the displacement or displacement rate may be assumed to vary
linearly within a small time increment. Both cases ere considered

below,

7.1 LINEAR VARIATION OF DISPLACEMENT RATE

For a given time interval,

For t=At

850y = Gnt + gt(é»+z - 8,) + 8,
or
At At
9_“‘ 'gn""{'én""z—'éu; (29)

Substituting (29) into (28) for the »+1 step

t 2 At
+ K@, + g— 8. *t3 8u1) * Fuy

C 8,

or
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€ +5E 08,1 = Fay - Rat (30)
E where
1 K At o
E B.lq.l - .l.(_(eu + T 9_;) (31)
E - Here (30) and (29) constitute recursive equations,

7.2 LINEAR VARIATION OF DISPLACEMENT

TR T e R T

We consider a linear variation of displacement so that the aver-

¥ age displacement at the mid-interval is

8y = @urs +8,)/2 (32)
1 The displacement rate at the mid-intervals is approximated as
Bary = ©u1 - 8,)/0 (33)

In view of (32) and (33) and rewriting @8) for the mid-interval w4,

we obtain

20 ,.- 20,
U

) + -l.(..em-. - F._M‘;,

!
)

or

2 - 2
G ot RBwy "Byt S e,

using (32) once again,

e 2
8ut = 267 C*+ D (Eary + 500, - 8, (34)

which may be solved repeatedly to any extent of time desired.
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APPENDIX A.11

MASS MATRICES

1.  GENERAL

v
ey

There are two types of mass matrices in use: 1lumped mass mstrix
and consistent mass matrix. The lumped mass matrix is a diagonal
matrix contributed by the tributary area around the node with equiv-
alent mass (weight divided by gravitational acceleration). The
consistent mass matrix is derived in Section 2 and given by (2,39)
in terms of the normalized interpolation function. Although the
lumped mass matrix is simpler we use the consistent mass matrix in

the present study because computer coding does not present any special

B 8 i als ot Bt ) L o e L O AR b ol e s & A
. it

difficulty.

2. THIN SHELL

The general form of consistent mass matrix (2.39) is

L m 21
Myn -ffpv‘h,,r(s)deds
oJ% "

or in matrix form

£
M=2m]| y'E& yErwds
0
or
M= 2mp Q‘ L ¢ (1)
8x8 8x8 8x8 8x8
in which

)
L -f 8" S usds )
8x8 A 8x4 4x8




T
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Here @ and S are given in (5), Appendix A.4 and the integral L

is easily obtained by computer program using Simpson's rule., .

3. THICK SHELL

The consistent mass matrix corresponding to a thick shell
without bending represented by the plane strain element described
in Appendix A.12 can be obtained similarly as in the previous sec-

tion. We have

1)
w=2n| | & & |fragan (3)
-1%-1

in which i_ and lJl are given in Appendix A.l2,
Explicit forms are not presented here because the computer cod-

ing by means of Gaussian quadrature is quite simple.




APPENDIX A,.12

THICK SHELL ISOPARAMETRIC ELEMENT

1. INTERPOLATION FUNCTION

Consider the four-sided element with nodes 1, 2, 3, and 4 charac-
terized by two coordinate systems r-z (cartesian coordinate) and £-I)
(isoparametric coordinate) as shown in Figure A.12.1. The isoparametric
nodal values are either 1 or -1 measured from the origin of §-i| coordi~

nate. It is possible to write

r= Ra (1)
where
R=[1818n]
a=(a a,a; a ]
Here a;, etc., are constants to he determined writing the nodal values

of X by substituting the nodal values of ¢ and 7 we obtain

r=Aa @)

~

where r = [ r; rqg r3 1y '
L]

1 -1 -1 1]
1 1 -1 -1
A=
~ 1 1 1 1
| 1 -1 1 -1
from which
-
a=A r
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Substituting the above into the expression for r gives

r=C1g083] 1 1
-1 1
1
2 |-1 -1
1 -1
or
r=yr
where

1 1 R
1 -1 rs
1 1 )
1 -1] _r.J

o= 3-8 (1-M)
Vo = Z(HE)(1-T)
¥y = 2(1+8) (14M)
Vo = 2(1-6) (147)

Similarly z can be written

z=Yz

Here !_ is called the isoparametric interpolation function.

Combining (3) and (4) we can also write

X, = ¥x8 or

In matrix form

el
X ofj=rx, or

vhere r'h Va
!- -
L*z Vs
- r*x 0
!_ =
0 "

x‘ - "er
r
~ = [zJ - !.3-
¥3 'J
¥s Ve |

Xo[ vy vrg v5 T4 2y 25 23 2 )

PR s - it o i &

X =2 rg20 21 2 ]

(3)

(%)

Ve
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(~1,1) ~
(u4 :VC) 'ﬂ
z,v
[ 4 1,1)
(tb .Va)
¢
("l:’l)
(u,v) 2
('1’1)
(ug,vg)
= r,u

Figure A.12.1: Isoparametric Element
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Here 1, 2, 3, and 4 indicate the node numbers,

S O Y s e dean e
i S LR A

It is now assumed that the displacements u and v are also

R related by the same interpolation functions such that

u= $u, vae=yv

"~ .

where

R TR TR S M CAT AR |
or us= k[(l-g N+ ey, + (1+ « =T~my,
.‘ + (L4 r+n+ ey + (- + - Mmuy,]

-%%(1+Bng+cnn+&um)un (5a)

' nml
B =-1 C = -1 D = 1

B =1 c D =-1

Similarly

v-%?;(1+3n-_+c"n+na v, (5b)

el

Since r is given hy

ok [(-g)(1-1 5+ (M) (1-1)T, + () (1T, + (1-9) AT, ]

T A

or =% [[R,+ (R)e+ (ROt (R)em ] - . (6)
where

=
-
]

(i:‘l +r” -‘4-1'3 +t‘)

=
[ ]

(-t‘l -+ l'. + fso l“)

3
[ ]

(-f.'l - t. + rs + r‘)

(tl- rﬂ + ra-:.“)

o h - - o
x
(1]
[ ]
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3 Similarly
: z = %(Q + Qe+ QN + QSN (7
i where
&
E Q = (2, + 5, + 5, + 7))
E Q = (-2 + 25 + 2z -z)
% Q= (-2, - 2g + 4 + 1)
f Q =(r, -1y +7-1)
g Substitution of interpolation functions into the strain-displacement
r relations will lead to partial differentiation of these functions, Thus,
i -&' i M M + g’ . -m
b Lol dr  dr D2 o
M 3 m . E + M . M
on dr Mo d® on
or
M| ar 22| (2 d
DF 1. he be dT b
= 8
atf o ae| (] "% |2 ®
o1 on A bz dz
This gives _
| 2= .22 [2
dr . il O de 14
A ,n (9)
| 2l far ar| |at
7 bz on or on
in which
- aAr . M - ftd b!
b [o', an e nnJ (10)

Here J is called Jacobian matrix. Performing the psrtial differentia-

tion required in ",
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-:E =¥ (e trytr, mr)+(xr -yt - N (11a)

. Similarly

T T

.%zi “ Y-z, +2,+2 -2)+(z -zt 2z - z, ] (11b)

-:-,Fl- = -2];- [ (-ry -rutra+rs) + (1y ~ra+ra=-ry)E)

AR ek o o P n” Al AN

y .‘ (1lc)
-b-ﬁ - % [(-z,‘-z3+z3+z4-) + (zy-zgt23-24 )g]
(11d)

9_1_‘ 2z 1 [(-r,+rl+r3-r‘)(-z,-z.+z3+z‘) +
San 16
(v, ~rytry =1, ) (-2, =24tz 42,07 +

Chra it A e s ety ]

(~r,+rgtr, -t ) (z, ~Zgtz 2, ) +
f (r, -re+r3-r‘)(zl -z te, -z,)m]
[ And

4‘ . 1

- 'gi 'g% " 16 [ (-r,-r.+r3+t4)(-zl+z'+za-z‘) +

(-tl srgtrytr, ) (zl ~2g42, =2, m+

(r, v tr,-r, ) (-2, +z +z,-2, )¢ +

, <ot
S e an Sealklabidiniing

(r, -t tr, -1, )(z,~z 2, -z‘)gn]
Substituting these into Equation (8) and denoting thet r,, = r, - x, etc,,

1
A =g ((Tea237T13%,5) + (Kae2157F 0200 + (T4 209 "Faa % M

(12)
Similarly,
g% = X[ (-vytvgtv, =V, ) + (v, =V, +v,=v )] (13s)

g% = X[V g Ay )+ (vvabvev e ] (13b)
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'g":' 'g{ - %6' {(~vytvgtvy =v, ) (o1, rtrydr,) +
(v Foghig v, ) (&, ~rgtrg =t )€ +
(vy ~Vatvg=v,) (-1 ~rytrgtr)n +
(vy ~va+va =V ) (T3 ~Ta+Ts ~1¢ ) 5N}
V A" AV A
?ﬁ‘%; . %E %ﬁ AR R ORI R (14a)

(V) B3 o PaTea a2y #V, T ) 0 +

(Vy gLy Vs Tt Tge )N 1

SL: -g:rz-] - -;‘-g {(=v, v tv,=v, ) (2 -z +z t2,) +
(~v,+vy vy =V, ) (zy -2 +2, =2, ) e +
(V) =%+ =V ) (-2, 2y +2, 420N & (vy-vetvs-ve)(2y  ~2s -2 )EN]
-g% ' ﬁ-} - -1—2 [(-v, "V vy tv, ) (-2, +2gt2, =2, ) +
(v, VgtV =V, ) (-2, 4z t2y -2 ) e +
(=, =VatVg tV ) (2, =29 424 =2, )T+ (v ~vg+vs =ve ) (23 ~2g+2s =24 yen}

therefore

ﬁ 'g% - 'g% 'g% - é [ (V) 2aqHVaZy #Va 24tV 2 ) +
(Vi 2,3 HVgZa s TVa 2,41V, 2y e +
(V, gtV 2 PV 20 PV Zga )N} (14b)

We will make use of equations ( 14a ) and ( 14b ) in evaluating '%z!

in terms of vy,v,,Vy,V, #nd nodal coordinates (r,,z,), (r.,z'),(ra,za)
and(r‘;z").

Fiom equation (.J') we can write,

a L1 .ns,mws,m] (152)
% & 1/ I |1 S - L I :

e Y AP T AT XY R Y




ST

T

!

and
r L1 [nz W B v
»r AL ax drd
Using equation ( 14a.) and (14b ),
gf - %h [V Ty qtvg Tyt v, tv, 1y, ) +
(V) 3 HVy Ty tV, Tgy ty Ty, ) € +
(v, TtV r, ty 1y 4, 15 )T
and
.gr! = 'él'z {Cvzgy bp2g 1,2 hv,2,,) +
(V) 2,312, 4+, 2,4+, 29, ) B
(V) 23 54V, 2) ;15 24 4V, 255 21)
Denote n= %Z
M, = Q(r, g try #hry,T)
My = Q(r,tr, e +r, 1)
My =, by, v, 0 )
M, = 0(ry, +r, g +15,7)
L, = 0(25,+2,5 #h2,,T)
L, =0z, 4z, 00z, 7)
L = 0z tz,, 0tz 1)
L, = Qz)5+2,, ¢hzy,7)

Subst{tuting these into equations (16a) and (16b) yilelds

IR X

]
1=
1<

| |
o
| <
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(15h)

(16a)

(16b)

(178)

(17b)




AR e e TR,

AT

]
K

OTTEENEIRR RS SRR S FENE B E AT T T TRl s A e e

wvhere

and

LR G N A
L=l 1, 1 1)

‘_’,_{"1 vy Va Vg )

Equations (i-17.a) and (1-17b) can also be written as

and
Az1

Az,

Az,

Az4

ST ¥
=T

=T

=2z

F. LA,
b2

3
-r4

.r'

= 23 -zl

Similarly,

Using equations ( 18a,h, (19&,b),(5a..) and ( Sb ) the following

or

dz

Br,
Br.
Br,

Br4

le
Bz.

Bz,

Bz,

relations can be obtained :

% Q (A, B, =t C,,.TI)V,,

h! - ?“l n (A: n+B:n g'.c: nﬁ)vn
T

= r4 - l‘:‘
= r,~r,
-rl -rn

4 73

" z,2,

u - % Q (A.n"‘B”.'_ +C: nn)un
[}

u
2u .,.?i{,(A, 4B, # 4C, 1 Ju_

Cr
Cr,

Cr,

Czl
Cz
Cz,

Cz,

I,
5, °h
T, -r,

r3~¥y

.z
Z -z,

Z,°?,
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(18a)

(18b)

(19a)

619b)
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X %‘zf = 5 % Pf A A +(A B 4B A )eHA C 4C A T

re tn rérn re rn rern
hHZ w1

[

(Bl' lcl' 'l+cl' IBP n)’n + BP ﬂBl'l '. + cf lcl' ,,T]'}ann

-O—z ; 'YE n-ll. @ {Af lﬂAl ﬂ+ (A"an + BrnA: n)! + (Arlczn +.crlAz n)n +

(Brlc:n + cr-an) m + Btnnz n" + Crlcznnz}v]un

dV v
dr or

tn 2n

4 4

=n Apubon * (a,,B +A”B")g + (Auczn + czlAzn)n +
ol m

(C, B,y +B,,C,,)0 +B B &+ C C N2V,

4 4 '
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4 4
\4
%; % -uglnfa, ar&{ Al‘l+ (BPI+AHB|\ )'- + (C“'FA"C“ )n +

(CPIB!I +Bl‘lcn +AI‘IDB )m + BPIBII !‘ + cflcl\ T'. + BI‘IDl'l em

CI‘ IDII m' }vlull

(8,,C, +C, B, +A, D ) + B B, g +C C, 1 +B, D @14, D, Mriv,u,
u ju 4 4 0
rh L O (At BB AL)E (G A C T ¢

(B, c”.,_cu B”...Dn A,.,.)"l + n'\ n”ﬂ + Cm C” ™ + Dn B”q'n +

D,C .M} uu
L o® . 28D (a4 (8,48, A )0+ (G, A ¥C, N+ (B, C, ¢

Ry l.t

C‘ B$l+Dl\Aln)m + Bll\ Blﬂg + cm C!In + Dﬂ Bzﬂ' n + Dm ctlm }ulul
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2 2 a 1 212
By, By %4C,, C, T+ (8, D, +D, B, )§N + (C, D, + D,C, )EMWD, D, 81 }

2. STRAIN ENERGY AND ELEMENT STIFFNESS MATRIX

Strains in the element are given by

7

Yz

Yr

Y
L zrd

oy

bz

_b_u_
dr

u/r

du
Nz

—-+—

-

dv
dr

Element stress strain relationship can be written as

E’z ) r‘.611

‘r D21

Dy

0

— s

i.. which

D

D

D

0

12

22

32

44 Lvrz‘
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o
]

11 ™ CEr(E-Eh) o

8
12 ™ CEr(EL vrr+EyVyy)

=D

o
]

= CEtEg Vp (14Vyy)

13 23

2
92 ™ CEp(E -Eyvr()

33 - CE: (1'\’:7)

Dl;lg = Gy
2 -
[Er(l"’:r) = 2E¢Vy (1+vyy) ] !

(]
]
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Strain energy in the element is given by

U--zlfY'adv

. ff (VO *Y 0 +Vr)") Y 2r%2r)dv
=3 f f f Va(Pri¥z * Ppp¥y ¥ Dyg¥y + ¥, (D3 v, 4Dy) v,4D,5v,)

+ yo (D.uvz+D Y _+D )] rdadrde

y y
32% 33V 12 P44’ ¢z

2
Since ['de -2, ffdrdzf[fl.!ldgdﬂ
-l

}
|
1 frf f dv v v W ou
"2 » - —_ =+
u 2 (2 f {(Dll > bz + D12 v + D13 i
-1 -1
l u AV du pu u
@y o3 * P ARt D P ;
|
1 du uu,y |
pr.ZE EN, aN dnd - 5
“cnote ’*“{ mxtuw ettt e )} r |J|dndr (20) 3
‘ 11
;] Fln -jf ‘82 fA,.A,.,ﬂ'(A,.Brn-FB,.. '")F+(Arncrn rn ‘,")T] (Br- l‘n r‘ ”‘)pn
- =1

+ B, oB,o” 7+ CeuCps, M ") rdjag

11
G,, -f g rAl‘lAz HA, BB, A zn)H'(Arl 20 tC;e o :n)n+
-1 -1

(Brn : n+crl zn)p-'l] + B, le r5=+ c"‘cl "na} T dT]dg
L. ff 0 { AzlAzn+(Axlen+Aanz')! + (A,,C 2%y '“)TH.
-1 -1

(€, 4B, *B, ,C, )7t B, B, P” + C, C, .17 Jr drde

Len -ff {A"A”"' 'A" ratByy ,,,)g+(A,. rathry l')n +
-1 -1

(BII P‘ zn fﬂ)gn + B! IBI' nF:8+ C CP u'na}r dn dP_;
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11
Pln .jf %{Arl+(BrI+Aran ); +(cr.+Ar.cn )T[ + (crlnu +BP.C" +A'.Dn ) Al
-1 -1

+ B, B, #* 4+ C C, 1P+ B, D A +C,D o] dnde

11
1
Q,, = j‘-—- (A, + (A, B, +B,)rt (A, C. +C, )T +(B, C, +C, B +A D, )EN+
-1

n 32 tan z8”’n
-1

BB A+ c,,C, 1™+ B, D, PPn+C, D, & " }Jdnde

RN
11 1
Rlﬁ - -3-2_ {Arn + (Br n+Brn Ar n)ﬁ-"(cm A|' ll+cf n)Tl + (Bm cl' n+cm Br n+Dm Ar l)gn +
-1 ~1
Bm Br nga*.cm Cr uﬂ. +Dm Br ..”»'ﬂ"’ Dn\ CUQTF }d'ﬂd§ = F:m ’
11

1
slll-ff-j-i {Az n+(Bz ntBy A, n)§+(cm A, nwzn)q + (Bl‘ Cl ‘+c" B’ “+D'“' A'")gn
-1
+B,B,,Ff? +C, C, ,N* D, B,, 8 + D, C, SPldndE = Q,
11
1
T, 'ff'fia_? f1+ (B, +B, )E+(C, +C, IN+(D, +D_+B, C  +C, B, )7 +
-1771
2
.Bm.B.s\ g? + Cm C“_na + (Bm D, +Dm Bn )E U

2 B D
(C, D, +D C, )ey +D, D 7 | |J|dide

These integrals to appear in (20) are evaluated by using 8ix point

Gaussian quadrature, With the notations above we can rewrite (18) in

the form,

1 4 4 : .
U=3 @m) v T (D 4F aVaVytD12Can Vs u, D, annu.-'-DzlG“u.v.

amlnwl 117wn '8 n
+ DZZIU nUgtiy Dy ,’Q‘ l‘u“\.xa-O-I):up'mul"v“ﬂ)..’zowu.u“

+ D33T.nu.un-l-Dl‘a(I.u'v'vnﬂ.“u‘.\r‘-i- - .u,,)}
or

4 4
1
U=3 (2,-,)'5”.);1 {A_ v.v 4B v u +C“u.v“+E“u.un}

an a8 n an & "
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or

uelon 2r
2 T .E‘E“ [.“-] Anl"“ v

C.. Egnllu

an n

The stiffness matrix K is identified as

K= % é Agyn Bay
o~ .-% ‘.‘ c E

where . e (21)
Avn = Dy FantDys 1,

Bl ' Dlzcl ll+D1 3Pl n+D£.l.Ll n

Con = DpyCoy#Dq P, 4D, L |

Eom ™ Dooly y#DpqQ, #0350, ;#D4,T, +D, F,

The stiffness matrix obtained from Eq. (21) is 'of the form,

v vy va V& uy uy u, YW
]

Ay A A A L By By, Bl Bl
I .

Ay Aaa B3 Ay By By By Byl o
]

Ay By A3n Ay, bBn o By By By | vy
)

Ay Ao Ay Ay cB o Paa By By o

................ .

C11 Cy2 Ci3 S ) By 12 Es Bl 9w
]

Cn Caa Ca3  Cy v By Epp  Epy By |
[]
|

Ca €2 C33  Cy ) B3  Egp  Egqy By | u,
]

Car Ca2 C3 G4 v By B4y By Bl oy,

Elements of stiffness matrix thus obtained .« should be rearranged

so that they . conform to the applied force vector (or computed dis-

placement vector).
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3. FORCE VECTOR DUE TO BODY FORCES

Let p, be the density of body of element. The force vector due

to dead load {s given by

1l pl
FY = 2nff va )] ranes
-1%1

F= 211[] ‘le.ﬂrd‘ﬂdg
1¥-1
where
3 L 0 Vs 0 v, 0 Ve 0
P = fo B’

The components of force vector become

]

= [0 Fll 0 Fa: 0 FS: 0 F4, ]T

in which

1 1
Fy = -2mp (1-€-1480) r| J| dnag
. ,L[l
1. 1
Fa,™ -21p (1+€-1-2N)r| 3] dnae
: ,L[I

1 pl
Fay = -2, [ [ asgmene|alanas
“17-1

1
Fau = -2np, [ f (1-g#1-EM)x| 7| anag
-17-1

4, STRESSES AT ELEMENT CENTROID

From earlier developments of strain-displacement relations it is

possible to write
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T
Y. [_..bv oy v W
~ dz dr r b ¥z

or ’(Afn + Brug + cl' nn)vl 7
[‘ (Azn + B; I\g + cl u'l)uﬂ
Y= &0
) L1 +8, g+C, T +D, EPu
ﬁ , 4& n n L] n

Apn + B, o8 + CoyMuy, + (At By + Coylv,

in which all notations are defined earlier.

If stresses are sought at the centroid of an element we have

€ =17 =0, Therefore,

e Vi i
4 A,n u
Yo = zln th “a
ns
a0
_‘}rva Uy + A, Va_|

The stresses at the centroid are then obtained from the standard

stress-strain relations.
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APPENDIX B

COMPUTER PROGRAMS

There are six independent computer programs in the present report:

(1) SP1 - This program performs static elastoplastic analysis for

2

(&)

¥

(5)

(6)

a fiber-reinforced thin shell,

SVP1 - This program performs static viscoelastoplastic analysis
for a fiber-reinforced thin shell,

DVP1 - This program performs dynamic viscoelastoplastic analysis
for a fiber-reinfcrced thin shell, Dynamic elastoplastic analy-
sis is obtained as a special case.

SP2 - This program performs static elastoplastic.analysis for

a fiber-reinforced thick shell.

SVP2 - This program performs static viscoelastoplastic analysis
for a fiber-reinforced thick shell,

DVP2 - This program performs dynamic viscoelastoplastic analysis
for a fiber-reinforced thick shell. Dynamic elastoplastic analy-
sis is obtained as a special case. This program is also capable

of analyzing a body compnsed of several monolithic and composite

materials,

It should be noted that all of these 6 progvams can handle isotropic ma-

terials and linear elastic behavior as special cases.

A summary of the basic theories used and various features available

in the programs is given below:

LIS

PP RN

5 e NSRS A e W By b2 LS Anre
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1. Thin Shell

a. Novozhilov's linear thin shell theory is used.

b. Curved finite element is used. Interpolation functions are
based on linear variations of meridional and tangential dis-
placement and cubic variation of transverse displacement,

¢c. Modified Hill's anisotropic yleld parameters are derived and
specialized for layers of angle or cross plys,

d. Internal or hidden variables are used for viscous effects.

e. Solution of governing equations is based on incremental approach
with increments in ioading for time-independent problems and
increments in time for time dependent problems,

2. Thick Shell

a. Three dimensional theory for strain-displacement is used and
specialized for axisymmetric deformations,
b. Plane strain isoparametric finite element is used with linear

variation of radial and axial displacements,

¢. Treatment of inelastic and viscous properties and solution '
procedures are the same as in a thin shell,

Descriptions of each program including subroutine organization chart,

subroutine descriptions, flow chart, and data input format are given in

the following subappendices,




APPENDIX B.1,1

8P1 - SUBROUTINE ORGANIZATION CHART

—{BCOND )
—{2ERO__)
—{¥ATR. " }——{ 3PEEDY |
—{CMETRY
—{DLOAD |
[ASSEMB |
—{RITEXK |
r—{FACTOR)
—DISPFL }—
—{SOLTN
T
(33
—{SPEEDY)
%L__w
—{PLASTC | | (ASSEVE)
FACTOR
—~{DISPL }—-
|—[SOLTN
STRESS |
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APPENDIX B.1.2

SP1 - DESCRIPTIONS OF SUBROUTINES

DESCRIPTION

Asgembles stiffness matrix and force vector in a single sub-
scripted array with boundary conditions imposed,

Reads boundary conditions and initializes the row-column
indices for assembling.

Calls FACTOR and SOLTN, and writes nodal forces and displace-
ments,

Computes the equivalen*t nodal forces, ‘

Computes and writes the elastic limit displacements, elastic
limit stresses, and elastic limit load,

Forms elastic stiffness matrix,

Solves given simultaneous equations in a single subscripted
array.

Calculates, for each element, the geometrical quantities
necessary for Simpson's integration along the linc element,

Reads all material properties and constructs transformation
matrices and local and global elasticity matrices.

Performs incremental clastoplastic analysis,

Performs Simpson's integration with given stress-strain rela-
tions to form the element stiffness matrix,

Writes non-zero elements of the lower half of the global
stiffness matrix with row number,.

Performs matrix multiplication,

Computes strains and stresses,

Zeroes out the given matrix,

Transforms dJdisplacements into Z-R coordinate system and

writes.




APPENDIX B.1.3

SP1 - FLOW CHART

START
] ’

Read and Write input data

Read boundary conditions and
form stiffness matrix indices

Read and Write material properties

. !

Construct local and global D, transformation matrices,
and anistropic parameters

1
DO K = 1, NELEMS

. -
Compute geometric properties

- b

Construct force vector

T —

Construct elastic stiffness matrix

Assemble in global form
imposing bouangx_gqggg;igns

Save the elastic global stiffness
matrix on drum file No, 11 |

Write the global force vector
and compute displacements

®
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Eompute global and local stresses, and write ’

—JE8...

|“sop

< NINCR « 0 >

}«o

Computie :

(1) elastic limit stress (g)

(2)
(3)

4
Let FTOT

XL =

DLOFC

elastic limit displace-
ment (8 ,)

incremental load -
parameter DLOFC

incremental load (dF)

XL

a;'f /Emax

i

XL/DELL

!

7-1, &,

O/DELL; @ =&, 0 =&

!

DO NI =1, NINCR

FTOT = FTOT + DLOFC
where FTOT is the load parameter

L

'

KOUNT - 0

-

l

KOUNT .. KOUNT + 1

]

Read K'®) from unit 11
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® ©

) —No __~"Check yielding>_!u___t
Dx -0 Develop D*
(p) _
LK = 0 Develop 5(’)
e - ]

K = k(®) , g(»

Solve for d@_

;

de = B d@

I

dg = (D + D%) de

~ !

| @@=

.

r~.¥as._ B __(/ Check con(fcﬁ;éﬁéé:>

T Nt + —aes

lNo

KOUNT = NCY No | !

-H—’.__‘M e - v :

AT BT

{
3
|
;
3
A
3
3
M
1
:
M
&
E
4
;]
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APPENDIX B.1.4

SP1 - DATA INPUT FORMAT

Card 1: FORMAT (20A4)

TITLE (I) Title of the problem

Card 2: FORMAT (10I5, 3F10.4)
(1) NELEMS - No, of elements
(2) NNODES - No. of nodes
(3) NET - No. of stations for Simpson's integration

Suggested values of NET

¢ - &  NET
0 ~3° 15
3° ~5° 19
5% ~ 9° 23
9° ~ 14° 29

The program assumes NET = 15, if NET = 0

(4) MECH - Signal for distributed load

0, 1f a force vector for distributed loads is not wanted
1, if a force vector for distributed loads is wanted
(5) NDITO - Signal for uniform or irregular distributed load
0, uniform pressure
1, pressure varies meridionally
(6) NINCR - No. of load increment desired

Set NINCR = DELL if two times the elastic limit load

is to be applied,
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Suggested values of NINCR and DELL

NINCR = 40 ~ 100

if NCY = 0
DELL = 40 ~ 100
NINCR = 20 ~ 50

1f NCY = 3
DELL - 20 ~ 50
NINCR = 0 for elastic analysis

(7) NLA - No, of layers for angle or cross plys
(8) NBC - No. of nodes with boundary condition(s)
(9) NCY - No, of iterations within a load increment

(10) NCON No. of node(s) with concentrated load(s)

(11) DELL - Fraction of elastic limit load to be applied for each

load increment,

(12) PER Percent error allowed for convergence in elastoplastic
analysis, Suggested value: 5 .. 10
(13) PCTARC- Fraction of arc length ignored at a pole.

Suggested value: ,01

Cards 3: FORMAT (3X, 2E12.6)

(1) Z(N) - Z - coordinate value
(2) R(N) - R - coordinate value
Note: Provide one card for each node in the order of node number,
The node number may be recorded in 3X spaces,
Cards 4: FORMAT (213, 4E12.6)
(1) NODEl - first node of the element
(2) NODE2 - second node of the element 3

(3) PHI1 - @ :

(4) PHI2 - &

(5) H1 - thickness at NODEl
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(6) H2 - thickness at NODE2
Note: Repeat NELEMS times in the order of element number,

The sign convention for @ is shown below

-¢
Card(s) 5: FORMAT (5I5)

(1) NOD - node number with boundary condition(s)

1, if meridional displacement is not allowed
(2) NDIR(1l) =

0, if free

1, if circumferential displacement is not allowed
(3) NDIR(2) =

0, if free

1, if normal displacement is not allowed
(4) NDIR(3) =

0, 1f free

1, 1if the rotation of the normal is not allowed
(5) NDIR(4) -
0, if free
Note: Repeat NBC times,
Card 6: FORMAT (I5)
0, 1f fiber angles are same for every element
TANG =
1, if not
Card 7: FORMAT (8F10,0)
SIGS(I) - Yidld stress in the direction of the normal to fiber for

each layer,

Raarigash At




Card

Card

Card

Card

Card

Card

Card

Card

Card

Card

Card

8: FORMAT (8F10.0)

SIGT(I) - Yield stress in fiber direction for each layer,

9: FORMAT (8F10.0)

SIG4(TI) - Yield stress in 45° from fiber direction for each layer,

10: FORMAT (8F10.0)

TAUT(I) - Yield stress in shear for each layer

11: FORMAT (8F10.0)

EPX(I) - Elastic modulus normal to fiber for each layer

12: FORMAT (8F10.0)

EPY(I) - Elastic modulus in fiber direction for each layer
Note: EPX(I) = EPY(I) for isotropic case

13: FORMAT (8F10.0)

GP(I) - Elastic shear modulus for each layer

14: FORMAT (8F10.0)

XNU(I) - Poisson's ratio (normal to fiber) for each layer

15: FORMAT (8F10.0)

YNU(I) - Poisson's ratio (in fiber direction) for each layer
Note: XNU(I) = YNU(I) for isotropic case

16: FORMAT (8F10.0)

EPX(I) - Plastic modulus normal to fiber for each layer

17: FORMAT (8F10.0)

EPY(I) - Plastic modulus in fiber direction for each layer

18: FORMAT (8F10.0)

EP4(I) - Flastic modulus in 45° from fiber direction for each

layer

161




Card 19:

FORMAT (8F10.0)

GP(I) - Plastic shear modulus for each layer

Card(s) 20:

ALPHA(I) - fiber angles for each layer measured from horizontal

Card(s) 21:

1
(2)
(3
(4)
)
(6)

Card(s) 22:

1)
(2)
3
(%)
(5)

Note:

PP1(1)
PP2(1)
PP3(1)
PP1(2)
PP2(2)

PP3(3)

NOD

CL(1)
CL(2)
CL(3)

CL(4)

FORMAT (8F10.0)

line.

element number if TANG & O,

FORMAT (6E10.0)

distributed pressure in direction 1 at

distributed pressure in direction 2 at

distributed pressure in direction 3 at

distributed pressure in direction 1 at

distributed pressure in direction 2 at

distributed pressure in direction 3 at

Note: Repeat NELEMS times in the order of element

number if NDITO =1

FORMAT (15, 4E15.6)

node number

concentrated force in direction 1

concentrated force in direction 2

concentrated force in direction 3
- concentrated force in direction 4
Note: Repeat NCON times,

Repeat Card(s) 20 NELEMS times in the order of

node
node
node
node
node

node
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APPENDIX B.2,1

SVP1 - SUBROUTINE ORGANIZATION CHART

~{zERO |
‘GMETRY)
~{DYOAD |
r—(BCONDY]
SPEEDY
—{ELSTIF | PLAST SPEED

— (ASBLYV]

—lVISCPLI-—

& a0
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APPENDIX B.2.2

SVP1 - DESCRIPTIONS OF SUBROUTINES

SUBROUTINE
NAME DESCRIPTION
(r) Cp) (r)

ABG Calculates viscous constsnts A, B, C,

ASBLYV Assembles in global form.

BCONDY Imposes boundary condition(s).

CMAT Forms the viscosity matrix.

DLOAD Computes the equivalent nodal forces,

ELSTIF Reads the material properties and forms the elastic stiff-
ness matrix.

FORV Performs integration for viscous force vector,

GMETRY Calculates, for each element, the geometrical quantitias
necessary for Simpson's integration along the line element.

INIT Reads the viscous property and forms submatrices for vis-
cosity matrix.

QUTDIS Writes the displacements.

OUTSTR Writes the stresses and the equivalent stresses.

PLASTI Performs the Simpson's integration to form stiffness or
viscosity matrix.

PLASV] Develops plastic stiffnesg matrix.

PLASV2 Develops plastic stiffness matrix.

SPEEDY Performs matrix multiplication,

STAN Calculates viscous and elastic stresses, checks yielding.

STRAVP Calculates incremental viscous and plastic stresses, in-
cremental equivalent stresses, and per cent error,

Visce Performs step by step integration,

st e e

s A s S 2% S de ah T G it
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SUBROUTINE

NAME DESCRIPTION

XKINVS Inverts a given symmetric matrix.

ZERO Zeroes out a given matrix.

ZRDISP Transforms the displacements into the Z-R coordinate

system and writes.
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- APPENDIX 3.2 .3 _
; SVP1 - FLOW CHART ‘ .

g - WA Sy

k) Develop M, J, K( ) and initialize
3 the anisotropic parametcrs of plasticity
i
Perform viscoelastic analysis
until ylelding occurs

e AN

{
l Begin incremental procedure |
1 - i
; Initialize d5, = O = Gy
q
p amax " oyigld
b dg = 0
3 l
8 | Begin new increment of time | '

Check yielcﬂng
: b ——< +day> G |
2 4

lCalculat:e 5

[' l

; ; ’ Develop K(In)]

st - .

] Substitute K(HI) into eqn. of

: equilib,and solve for 6, 8, .

TR TI

by = 8, - .é.t-)_
From this calculate d!.t s dig
! ® © ®

A

DRt s
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APPENDIX B.2 .3 (continued)

Gi)' ® '
[ ] ;
"% t% :
Calculate D
*
do(g,y = [D + DIdY,

Calculate dggy) ;

L]

A N S B W N T R R A

®

g

~li

dg, = dg(gp) + dd(y)

dgp = 2'dgy
N°<C;;::icmconverge.nce of dg, and d53>

Yes L

O, * %y + do,

Celculate Z '

If yielded, update the
anisotropic parameters of plasticity
end set ¢ =3 +dd;
max t~1




Card 1:

Card 2:
1)
(2)
3

(4)

(5)

(6)
¢))
(8)
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APPENDIX B.2.4

SVPL - DATA INPUT FORMAT

FORMAT (20AA)

TITLE(I) Title of the Problem

FORMAT (1015, 3F10.4)

NELEMS - No. of elements

NNODES - No. of nodes

NET - No, of stations for Simpson's integration

Suggested vr .ue of NET:

P - 0 NET
0 ~3° 15
30 ~ 59 19
50 ~ 90 23
99 ~ 15° 29

The program assumes NET = 15, if NET = O,
MECH - Signal for distributed load
0, if a force vector for distributed load is not
wanted,
1, if a force vector for distributed load is wanted,
NDITO - Signal for uniform of irregular distributed load
0, uniform pressure
1, pressure varies meridionally
NDELT =~ No. of time steps desired.

NLA - No. of layers for angle or croes plys.

NBC - No. of boundary condition(s),




(9
(10)

(11)

(12)

Card 3:

(1)

(2)

(3)

(4)

Card 4:

Cards 5:
(1)
(2)
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NCY - No. of iterations within a time step.

NCON - No, of node(s) with concentrated load(s).

PER - Percent error allowed for convergence in plastic
analysis,
Suggested value: PER = 5 ~ 10

PCTARC

Fraction of arc length ignored at a pole.
Suggested value: 0,01
The program assumes PCTARC = 0,01, if PCTARC = O,

FORMAT (415)

IS(1) 1, if elastic analysis is wanted,.

0, if plastic analysis is wanted

IS(2) =~ 1, if nonviscous analysis is wanted
- 0, if viscous analysis is wanted
IS(3) - Print signal

Print displacements and stresses at every ]’.8(3)5‘--l
step.

Tiie program assumes IS(3) = 5, if IS(3) = O,

1S(4) - Transformation signal.
Transform the displacements into the Z-R coordi-
nate system and print for every IS(Q)Eh step.

The program assumes I1S(4) = NDELT, if IS(4) = 0.

FORMAT (3X, E12.6)

DELT - Size of the time step in seconds (At).

FORMAT (3X, 2E12.6)
Z(N) - Z - coordinate value.

R(N) - R - coordinate value,
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Note: Provide one card for each node in the order of node

number. The node number may be recorded in 3X spaces,

1)
%"
3
%
A
;

Cards 6: FORMAT (213, 4E12.6)

(1) NODEl - First node of the element :
(2) NODE2 - Second node of the element 3

3
(3) PHII - ‘P; E

(4) PHI2Z - 9,

(5) H

Thickness at NODEl

(6) H2 Thickness at NODE2
Note: Repeat NELEMS times in the order of element number,

The sign convention for ® is shown below.

Card(s) 7: FORMAT (6E10.0)

(1) PP1{1) - Distributed pressure in direction 1 at node 1.
(2) PP2(1) - Distributed pressure in direction 2 at node 1.
(3) PP3(1) - Distributed pressure in direction 3 at node 1.
(4) PP1(2) - Distributed pressure in direction 1 at node 2,
(5) PP2(2) - Distributed pressure in‘'direction 2 at node 2,
(6) PP3(3) -

3
Distributed pressure in direction 3 at rode 2. %
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Nowu2: Repeat NELEMS times in the order of element number if
NDITO = 1,
Card(s) 8t FORMAT (IS, 4E15.6)

(1) NOD Node number

(2) CL(L) - Concentrated force in direction 1.
(3) ¢cL(2) - Concontrated force in direction 2,
(4) CL(3) -~ Con-entrated force in direction 3,

(5) CL(4) Concentrated force in direction 4,

Note: Rnpeat NCON times.
Omit if NCON = O,
Card(s) 9: TORMAT (2I5)
(1) NOD - Node number with boundary condition(s).
(2) NDEGF -~ Th: cusrdinate number of whicn freedom is re-
strained.
Note: Repeat NBC times,
Card 10: FORMAT (8F10.0)
SIGS(I) - Yield stress in the direction of the normal to fiber
for each layer.
Card 11: FORMAT (8F10,0)
S"GT(XI) - Yield stress . fiber direct. . for each layer.
Card 12: FORMAT (8F10.0)
S1G4(Y) - Yield stress in 45° from fiber directior for each laye..
Card 13: FORMAT (8F10.0)
TAUT(1) - Yield stress in shear for each layer.
Card 14: FORMAT (8F10,u}

EPX{1) - Rlastic modulus normal to fiber for each layer.

. e e mramer s wiin g




Cari 15:

EPY(I)

Card 16:
GP(I1)

Card 17:
XNU(T)

Card 18:

NU(I)

Card 19:
EPX(I)

Card 20:
EPY{1)

Card 21:

EPr(1)

Card 22:
GP(1)

Card 23:
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FORMAT (8F10.0)

- Elastic modulus in fiber direction for each layer.
Ncte: EPX(I) = EPY(I) for isotropic case,

FORMAT (8F10.9)

- Elastic shear modulus for each layer.

FORMAT (8F10.0)

- Poisson's ratio (normal *o fiber) for each layer.

FORMAT (8F10.0)

- Poisson's ratio (in fiber direction) for each layer.

Note: XNU(L) = YNU(I) for isotropic case.

FORMAT (8F190.0)

- Plastic modulus normal to fiber for each layer.

FORMAT (8F10.0)

- Plastic modulus in fiber direction for each iaver,

FORMAT (8£190.0)

- Plastic modulus in 45° from fiber direction for each
layer,

FORMAT (8F10.0)

- Plastic shear modulus for each layer.,

FORMAT (8F10,0)

ALPHA(I) - Fiber angles for each layer measured from horizontal

Card 24:
Q1)
(2)

line,
Note: Repeat NELEMS times.
FORMAT (8F1C.0)
~is = Relaxation time in fiber direction,

TT - Relaxection time in the direction of normal to fiber.

Y a

-
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(4)

Note:

DSL - EPY(Y) (see Card 15)
DST - EPX(I) (see Card 14)

Not required if IS(2) # 0.
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APPENDIX B.3.1

DVP1 - SUBROUTINE. ORGAMILZATION CHAPT

BCORDY |
SPEEDY
——{ELSTIF |— ———[PEEDY

FORV

' SPEEDY
‘E@"""mm’sﬁ]-—__.‘m

*@-—I"mm
—__XKINVS|

- ~{SFEEDY)
TR )
(2R
——{OTTBYS]

——{ 7RDISYF)

u---.a
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APPENDIX B.3.2
DVP1 - DESCRIPTIONS OF SUBROUTINES

SUBROUTINE

NAME DESCRIPTION

ABG Calculates viscous constanta‘li(;zkaz

ASBKTV Assembles in global form.

BCONDY Imposes boundary condition(s).

CMAT Forms the viscosity ' matrix.

DLOAD Computes the equivalent nodal forces

ELSTIF Reads the material properties and forms the elastic stiffe-
ness matrix.

FORV Perfoims integration for viscous force vector,

GMETRY Calculates, for each elemeut, the geometrical quantities
necessary for Simpson's integration along the line ele-
ment.,

INIT Reads the viscous property and forms submatrices for :
viscosity matrix.

MASS Forms, for each element, the consistcent mass matrix.

OUTDIS Writes the displacements.

OUTSTR Writes the stresses and the equivalent strecses,

PLASTI Performs  Simpson's 1integration to form stiffness or
viscousity matrix,

PLASV1 Develops plastic sti{fness matrix,.

PLASV2 Develops plastic stiffness matrix.

SPEEDY Performs matrix multiplication,

STAN Calculates viscous and elastic stresses, checks ylelding.,

STRAUP Calculates incremental viscous and plastic stresses,
incremental equivalent stresses, and per cent error.

VISCP Performs step-by-step integration.




e
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APPENDIX B.3.2 (cont.)

DVPI - DESCRIPTIONS OF SUBROUTINES

SUBROUTINE

NAME . DESCRIPTION

XKINVS Inverts a given symmetric matrix.

ZERO Zeroes out a given matrix.

ZRDISP Transforms the displacements into the Z-R coordinate

system and writes,




APPENDIX B.3.3

DVPI - FLOW CHART

Develop y_, 3 1) and initialize

~

the anisotropic parameters of plasticity

Perform viscoelastic dynamic analysis

1

until ylelding occurs

- I

Begin incremental procedure |

i

Initialize d&; =0, - Gy

6max = cyield
dg = 0

1 —

-

Begin new increment M'

No Check yieclding Yea
Opy T 0> 0
D lCalculate __sl

l Develop E(III)I

Substitute E(III) into eqn, of
Motion and solve for 8,, Qt

dgi - 9.1 - 9::.,

@, =8, -8,
From this calculate dY, , dY,

!
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APPENDIX B.3.3 (continued)

® o ®

Iy = %.1 + dg,
Calculate D
%

do(gy) = [2"' Dlay,

Calculate dogy)

dg, = dg(¢,) + do(y)

Calculate 2
dg; = 2'dg,

e - .- ..
- .[ S

%}—:E ‘convergence of d5, and doz >

3
Yes :

Q1

¢ = crt_1 + do,
" % * 4%

= Q1 T &

4% 4% 19

"8t
If yielded, update the
anisotropic parameters of plasticity

and set Ynax - -1 + dog

- a

i o Ya e a MR T 1% " e P A b
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Card 1:

Card 2:
(1)
()
3)

(%)

(5)

(6)
€))
(8)
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APPENDIX B.3.4

DVP1 - DATA INPUT FORMAT

FORMAT (20A4)

TITLE(1) Title of the problem

FORMAT (1015,3F10,4)

NELEMS - No. of elements

NNODES - No.'of nodes

NET

- No. of stations for Simpson's integretion

Suggested value of NET

%~ @ NET
0~ 3° 15
3% ~5° 19
50 ~ g0 23
9° ~15° 29

The program assumes NET = 15, if NET = O.

MECH

NDITO

NDELT

NBC

- Signal for distributed load

0, if a force vector for distributed load is not
wanted,

1, 1f a force vector for distributed load is wanted.

- Signal for uniform of irccgular distributed load
0, uniform pressure

1, pressure varies meridionally

- No. of time steps desired
- No. of layers for angle or cross plys

- No. of boundary condition(s)

[P,
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(9
(10)

(11)

(12)

Card 3:

(1)

(2)

3)

(%)

Card 4:

(1)

(2)
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NCY - No., of fterations within a time step
NCON - No, of node(s) with cencentrated load{s)
PER - Percent error allowed for convergence in plastic
analysis
Suggested value PER = 5 ~ 10
PCTARC - Fraction of arc length ignored at a pole
Suggested value: 0,01
The program assumes PCTARC = 0,01, if PCTARC = 0.
FORMAY (415)
IS(1) =~ 1, if elastic analysis is wanted
0, if plastic analysis is wanted
IS8(2) - 1, if nonviscout snalysis is wanted
0, if viscous analysis is wanted
1S(3) - PBrint signal
Print displacements sand stresses at every IS(3)£E
time step.
The program assumes IS(3) = 5, 1if IS(3) =0
IS(4) - Tranaformation signal
Transform the displacements into the z-R coordinate
system and print for every IS(a)Eh step,
The program assumes 1S(4) = NDELT, 1f 1IS(4) = 0.
FORMAT (3X, 2E12,6)
RRO - Average density of the material to compute the mass
matrix in 1bs/ir®
DELT -

Size of the time step in seconds (At)

Note: At < 107® gec, for metals.
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Cards 5: FORMAT (3X,2F12.6)
(1) 2Z(MN) - Z - coordinate value
(2) R(N) =~ R - coordinate value
Note: Provide one card for each node in the order of node number.
The node number may be recorded in 3X spaces,
Cards 6: FORMAT (213, 4E12.6)
(1) NODE1 - Pirst node of the element
(2) NODEZ - Second node of the element
(3) PHIl -
(4) PHI2Z - o
(5) Hl1 - Thickness st NODEl
(6) N2 - Thickness at NODE2
Note: Repeat NELEMS times in the order of element number.

The sign convention for ¢ is shown below.

Card(e) 7: FOR'AT (6ELC.0)
(1) PP1(l) - Distributed pressure in direction 1 at node 1
(2) PP2(1) - Distributed pressure in direction 2 st node 1
(3) PP3(1) - Distributed pressure in direction 3 at node 1

(4) PP1(2) - Distributed pressure in direction 1 at node 2

anet ¥ Sl St o

G el

A i ST 4y

AT

S dogisaa

v

PRSI TES P




182

(5) PP2(2) - Distributed pressure in direction 2 at node 2
(6) PP3(3) - Distributed pressure in direction 3 at node 2
] Note: Repeat NELEMS times in the order of element
number if NDITO = 1,
Card(s) 8: FORMAT (15, 4E15.6)
(1) NOD - Node number
(2) CL(1) - Concentrated force in direction 1
(3) CL(2) - Concentrated force in direction 2
(4) CL(3) - Concentrated force in direction 3
(5) CL(4) - Concentrated force in direction 4
Note: Repeat NCON times,
Omit {f NCON = 0,
Card(s) 9: FORMAT (215)
(1) NOD - Node number with boundary condition(s)
(2) NDEGF - The coordinate number of which freedom is restrained,
Note: Rapeat NBC times.
Card 10: FORMAT (8F10.0)
SIGS(I) - Yield stress in the direction of the normal to
fiber for each layer,
Card 11: PORMAT (8F10.0)
SIGT(I) - Yield stress in fiber direction for each layer.
Card 12: FPORMAT (8F10.0)
SIG4A(X) - Yield stress in 45° from fiber direction for each
layer
Card 13: FORMAT (8F10.0)

TAUT(I) - Yield stress in shear for each layer
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Card 14: FORMAL (8F10.0)

EPX(1) - Elastic modulus normal to £iber for each layer
Card 15: FORMAT (8F10.0)

EPY(1) - Elastic modulus in fiber direction for each layer

Note: FPX(I) = EPY(I) for isotropic case

Card 16: FORMAT (8F10.0)

GP(I) - Elastic shear modulus for each layer
Card 17: FORMAT (8F10.0)

XNU(I) - Poisson's ratio (normal to fiber) for cach layer
Card 18: FORMAT (8F10.0)

YNU(I) - Poisson's ratio (in fiber direction) for each layer

Note: XNU(I) = YNU(I) for isotropic case

Card 19: FORMAT (8F10.0)

EPX(I) - Plastic modulus norma! to fiber for esch layer
Card 20: FORMAT (8F10.0)

EPY(1) - Plastic modulus in fiber direction for each layer
Card 21: FORMAT (8F10,0)

EP4(1) - Plastic modulus in 45° from fiber direction for cach

layer

Card 22: FORMAT (£710.9)

GP(1) - Plastic shear modulus for esch layer
Card 23: PORMAT (8F10,0)

ALPRA(1I) - Fiber angles for each layer mcasured from horizonta®

line
Note: Repeat NELEMS times,

Card 24: FPORMAT (8F10.0)
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Relaxation time in fiber direction

Relaxation time in the direction of normal to fiber

EPY(I) (see Card 15)

G 1N ¢ w gass

EPX(1) (see Card 14)

Not required if IS(2) ¥ 0.
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APPENDIX B.4.1

SP2 - SUBROUTINE ORGANIZATION CHART

[INPUT) - ERAN's|
{SETIP )

e —— —

STIFF1i| - [GAUSS] - [F]

~—{SPEEDY]

——|PLASI1

—{STIFIF|
—{ASBLYT]

—{SPEEDY]
—{STIFIY]
—{ASBLYT)
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APPENDIX B.4.2

SP2 - DESCRIPTION OF SUBROUTINES

SUBROUTINE

NAME DESCRIPTION

ASBLYL Assembles stiffness matrix,

F Evaluates functional values used in Gaussian quadrature
integration.

GAUSS Performs Gaussian quadrature integration.

INPUT Reads and writes input data.

PLASI1 Develops instantaneous stiffness matrix for initial
yielding,

PLASI2 Develops instantaneous stiffness matrix for subsequent
ylelding.

SETUP Sets up weight-function values used in quadrature inte-
gration,

SPEEDY Performs matrix multiplication.

STIFIP Forms element stiffness matrix for the given elasticity
matrix.

STIFF1 Calculates coordinate-dependent values used in quadrature
integration,

STRANP Calculates incremental stresses, incremental equivalen’
stresses, and pmer cent error to test for convergence,

STRESS Computes displacements and stresses under given load,
and then scales the quantities to the elastic limit.

TRANS Develops transformation matrices for both stress and strain,

XKINVS Performs matrix inversion,

XTIFIS Calculates local elasticity matrix, transforms this to

global coordinates, and then forms global stiffness matrix.
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APPENDIX B.4.3

SP2 - FLOW CHART

START

!

| Read and write input data I

Develop elastic element stiffness matrix
and assemble global stiffness matrix

y

Impose boundary conditions

Invert global stiffness matrix

{ Solve for elastic displacements l

Compute elastic global and local stresses,
equivalent stresses, and load
factor A where A = a°l/ema

ax
STOP < NINCR = 0
‘,—————F \___

No

Scale elastic quantities (displacements,
stresses, forces, etc,) to the elastic
limit by multiplying by A

Perform plastic analysis now

Compute incremental force dP from
dP = (A/DELL) x avplied force

¢

Initialize d, = G/DELL, dg = 0

®
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KOUNT = 0

[KOUNT = KOUNT + 1 Jo—
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Check yileldin
N y g

b=o0

o

E(P)s 0

Z.

G+dd >3
‘\\\\\ max

%
Develop D
Develop K'¥)

K= K% KO

|

Solve for incremental displacements d®

|
| _d¢=Bd
]
%
dg = (D + D)dE

l

dGe = £(do)

.-jgﬁLuz::: Check COnvergencéﬁ:::>

R No

be—Te® kot : NCY S0 5y

= a5,

Update previous quantities, i, e,
& =6 . +d§
g =0+ dg

G = Gy -y + do

No_~" Check to see if the proper number of

© \_load increments has been executed

>

¢+ Yes

ISTOP!
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APPENDIX B.4.4

SP2 - DATA INPUT FORMAT

Cart 1: FORMAT (20A4)
TITLE(I) Title of the problem
Card 2: FORMAT (215, 2F10.0)

(1) NCY - Number of iterations allowed for convergence within
. a load increment,

(2) NINCR - Number of load increments,
(3) PER - Allowable per cent error for convergence
4) DELL - Fraction of elastic limit load to be applied for

each load inccrement.
Cards 3:  FORMAT (2F10.0)
(1) z - 7 coordinate value
(2) R - R coordinate vlaue
(Note: Provide one card for each node.
Cards 4: FORMAT (415)

I-J-K-L designations of nodes for a given element, in counter-
clockwise order, i

Note: Provide one card for euach element.

Sample: 2 I =4
J=35
5 K= 2
4 L=1

Card 5: FORMAT (I5)
NBC - Number of boundary conditions

Cards 6: FORMAT 7215)

(1) NOD - Node number of boundary condition

(2) IDG - Degree of freedom at the node which {s restrained
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Card 7:
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IDG = 1 if z displacement restrained

IDG = 2 1f R displacement restrained

FORMAT (I5)

ISAME ~ ISAME = 1 if all elements have same card(s) 8,

Card(s) 8:
(1
()
(3)

(4)
()

(6)
)]

(8)

Card 9:

FORMAT (8F10.0)

ET « Modulus of elasticity transverse to fiber

EL - Modulus of elasticity along ilber

GNUTL ~ Poisson's ratio between fiber and direction trans-
verse to fiber

GNUTT - Poisson's ratio between directions normal to fiber

GTL - Shear modulus between fiber and direction trans-
verse to fiher

GT - Shear modulus bhetween direct!ion’ riormal to fiber

ALPH - Angle in degrees from horizontal to fibar direc-
tion within plane of the structure

PHI - Angle in degrees from vertical to planme of the
structure

Note: Provide one card for each element 1f ISAME not

equal to 1,
FORMAT (15)

ISAME - ISAME = 1 if each element has same card(s) (10} and card(s)

11.

Card(s) 10: FORMAT (8F10.0)

(1)
(2)
(3)
(4)
(5)
(6)

sor
SOL
T0T
TOL
EPT

EPL

- Yield stress in tension transverse to fiber

Yield stress &n tension in fiber direction

Shear yileld stress in tension transverse to fiber

Shear yleld stress in temsion in fiber direction

Plastic modulus normal to fiber

Plastic modulus along fiber

PRPE S w4

mea e AV ———
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(7) GPT - Plastic shear modulus between directions normal
to fiber .
(8) GPL - Plastic shear modulus between fiber and direction

normal to fiber
Card(s) 11: FORMAT (8F10,0)
Same as cards B except for compression

Note: Provide one card(s) 10 and one card(s) 1l for each
element if ISAME not equal 1.

Card 12: FORMAY (I5)
NFORCE - Number of externally applied concentrated forces
Card(s) 13: FORMAT (215, F10.0)
(1) NCD - Node number of applied concentrated force
(2) IDG - Degree of freedom at which force is applied
IDG = 1 if force applied in z direction
IDG = 2 if force applied in R direction
(3) FOR - Magnitude of applied force

Note: Provide one card for each applied force if NFORCE
= 0 Caxd 13 is not needed

Card 14: FORMAT (15, F10.0)
NPRES ~ Number of elements with applied pressure
PRES5 - Applied pressure
Card(s) 15: FORMAT (315)
(1) NEL? - element pressure applied to
(2) NOD1 =~ One node of the element having pressure
(3 NOD2 -~ Second node of the element having pressure

liote: Frovid.. one card lor each element having pressure. If
NPRESS ™ O card(s) 15 not needed.

SAMPLE ! PRESS = 5.0
NELP = §
3 !l NOD1 = 3
. 4 NOD2 = 4
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APPENDIX B.5.1
SVP2 - SUBROUTINE ORGAINTZATION CHART
——{INPUT _|— — TRANS
~——|SETUP |
F——| STIFF1]—{GAUSS ]—1 F |
——{ SPEEDY]
|——] XTIFIS
STIFIP ]
ASBLYT
—{A86 ]
| STEEDY
| INITI —
| STIF1P ]
\—{ASBINL
e LLSLi)
———{ SPEEDY
e
r——[ STRAIN |-———{SPEEDY]
(STRY | L—[SPEEDY
|—{Eoron ]
SFEEDY
~——{FEaS] —{STIPTE]
ASBLYI
SPEEDY
PLAS - T
-——{STRRIN) [ SPEEDY]
——{_STRANP] | [SPEEDY|
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APPENDIX B.5.2

SVP2 - DESCRIPTION OF SUBROUTINES

DESCRIPTION

ABG
ASBLYI
BCFOR
F

GAUSS

INPUT
PLASI1

PLASI2

SPEEDY

SETUP

STAN

STIFF1

STIFIP

STRAIN

STRANP

Calculates viscoelastic constants A, B, C

Assembles stiffness matrix and damping matrix

Applies boundary conditions to force vectors

Evaluates functions used in integration

Performs Gaussian quadrature integration

Develops the damping matrix together with values needed

in viscous stress calculations

Reads and writes input data

Develops plastic stiffness matrix for initial ylelding
Develops plastic stiffness matrix for subsequent

ylelding

Performs matrix multiplication

Initializes values used in Gaussian quadrature integration
Calculates elastic and viscous stresses and checks yilold
ing. If no yielding it updates stresses, equivalent stresses,
etc, If yielded it inftializes incremental equivaleng stress,
Calculates coordinate values used in the integration ;cheme
for development of the stiffness and damping matrix

Forms element stiffness and damping matrix from functions
evaluated in STIFFl

Calculates local strains from global displacements
Calculates increment stresses, equivalent stresses and per

cent error between any two iterations of a time increment
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- SUBROUTINE
) - NAME DESCRIPTION
¢ . —_— ————=
E TRANS Forms the stress and strain transformation matrices
b
. XKINVS Performs matrix inversion
Z
é' XTIFIS Calculates and assembles global stiffness matrix
|
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APPENDIX B.5.3

SVP2 - FLOW CHART :

The flow chart for SVP2 is the same as that for SVPl in Appendix
B.2.3.
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APPENDIX B.5.4

SVP2 - DATA INPUT FORMAT

Card 1: PORMAT (I5, F10.0) E
(1) NDELT - Number of time increments
(2) DELT - Size of time increment
Card 2: FORMAT (15, F10.0)
(1) NCY <« Number of iterations allowed fcr convergence with-
in a time increment if yielding has occurred.
(2) PER =~ Allowable per cent error for convergence
Cards 3: Insert Cards 3 through Cards 15 from B.4.4.
through
Cards 15
Card(s) 16:FORMAT (4F10.0, 15) e

(1) TT = Relaxation time in dircciion transverse to fiber

) TL ~ Relaxation time in fiber direction

(3) 14 - Modulus of elasticity normal to fiber

4) DL - Modulus of elasticity in fiber directiom

(5) ISAME - Let ISAME = 1 if all elements have same properties

Note: Provide one card for each element if ISAME not equal 1.
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APPENDIX B,6,1
DVP2 - SUBROUTINE ORGANIZATION CHART
The subroutine organization chart for DVP2 is the same as that
for SVP2 except that MAIN calls an additional subroutine, MASS, which

develops the mass matrix.

APPENDIX B.6.2
DVP2 - DESCRIPTION OF SUBROUTINES
The description of subroutines for DVP2 is the same as that for
SVP2 except that subroutine MASS should be added to the list.

MASS Develops and assembles the mass matrix,

APPENDIX B.5.3
DVP2 - FLOW CHART
The flow chart for DVP2 is the same as that for DVP1 in Appendix
5;3.3.

APPENDIX B.6.4
DVP2 - DATA INPUT FORMAT

Cards 1 - Insert Card 1 through Cards 16 from SYP2 in Appendix B.5.4.
through

Card(s) 16
Card(s) 17: FORMAT (¥10.0, I5)
(1) DEN -« Weight density of the material in pounds per
cubic inch.
(2) ISAME - let ISAME = 1 i{f all elements have same density.

Note: Provide one card for each element if ISAME not equalto. 1.
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